Pseudoscalar
   HOME

TheInfoList



OR:

In
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrice ...
, a pseudoscalar is a quantity that behaves like a scalar, except that it changes sign under a parity inversion while a true scalar does not. Any scalar product between a
pseudovector In physics and mathematics, a pseudovector (or axial vector) is a quantity that is defined as a function of some vectors or other geometric shapes, that resembles a vector, and behaves like a vector in many situations, but is changed into its ...
and an ordinary
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
is a pseudoscalar. The prototypical example of a pseudoscalar is the
scalar triple product In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors. The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector- ...
, which can be written as the scalar product between one of the vectors in the triple product and the cross product between the two other vectors, where the latter is a pseudovector. A pseudoscalar, when multiplied by an ordinary
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
, becomes a pseudovector (axial vector); a similar construction creates the
pseudotensor In physics and mathematics, a pseudotensor is usually a quantity that transforms like a tensor under an orientation-preserving coordinate transformation (e.g. a proper rotation) but additionally changes sign under an orientation-reversing coordi ...
. Mathematically, a pseudoscalar is an element of the top
exterior power In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is ...
of a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
, or the top power of a
Clifford algebra In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As -algebras, they generalize the real numbers, complex numbers, quaternions and several other hyperco ...
; see pseudoscalar (Clifford algebra). More generally, it is an element of the
canonical bundle In mathematics, the canonical bundle of a non-singular algebraic variety V of dimension n over a field is the line bundle \,\!\Omega^n = \omega, which is the ''n''th exterior power of the cotangent bundle Ω on ''V''. Over the complex numbers, it ...
of a
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
.


In physics

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
, a pseudoscalar denotes a
physical quantity A physical quantity is a physical property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a ' Numerical value ' and a ' Unit '. For exam ...
analogous to a scalar. Both are
physical quantities A physical quantity is a physical property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a ' Numerical value ' and a ' Unit '. For exam ...
which assume a single value which is invariant under proper rotations. However, under the parity transformation, pseudoscalars flip their signs while scalars do not. As
reflection Reflection or reflexion may refer to: Science and technology * Reflection (physics), a common wave phenomenon ** Specular reflection, reflection from a smooth surface *** Mirror image, a reflection in a mirror or in water ** Signal reflection, in ...
s through a plane are the combination of a rotation with the parity transformation, pseudoscalars also change signs under reflections.


Motivation

One of the most powerful ideas in physics is that physical laws do not change when one changes the coordinate system used to describe these laws. That a pseudoscalar reverses its sign when the coordinate axes are inverted suggests that it is not the best object to describe a physical quantity. In 3D-space, quantities described by a pseudovector are anti-symmetric tensors of order 2, which are invariant under inversion. The pseudovector may be a simpler representation of that quantity, but suffers from the change of sign under inversion. Similarly, in 3D-space, the
Hodge dual In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the a ...
of a scalar is equal to a constant times the 3-dimensional Levi-Civita pseudotensor (or "permutation" pseudotensor); whereas the Hodge dual of a pseudoscalar is an anti-symmetric (pure) tensor of order three. The Levi-Civita pseudotensor is a completely anti-symmetric pseudotensor of order 3. Since the dual of the pseudoscalar is the product of two "pseudo-quantities", the resulting tensor is a true tensor, and does not change sign upon an inversion of axes. The situation is similar to the situation for pseudovectors and anti-symmetric tensors of order 2. The dual of a pseudovector is an anti-symmetric tensor of order 2 (and vice versa). The tensor is an invariant physical quantity under a coordinate inversion, while the pseudovector is not invariant. The situation can be extended to any dimension. Generally in an ''n''-dimensional space the Hodge dual of an order ''r'' tensor will be an anti-symmetric pseudotensor of order and vice versa. In particular, in the four-dimensional spacetime of special relativity, a pseudoscalar is the dual of a fourth-order tensor and is proportional to the four-dimensional Levi-Civita pseudotensor.


Examples

* The
stream function The stream function is defined for incompressible ( divergence-free) flows in two dimensions – as well as in three dimensions with axisymmetry. The flow velocity components can be expressed as the derivatives of the scalar stream function. T ...
\psi(x,y) for a two-dimensional, incompressible fluid flow \mathbf\left(x,y\right)=\left\langle \partial_\psi,-\partial_\psi\right\rangle . *
Magnetic charge In particle physics, a magnetic monopole is a hypothetical elementary particle that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). A magnetic monopole would have a net north or south "magneti ...
is a pseudoscalar as it is mathematically defined, regardless of whether it exists physically. *
Magnetic flux In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted or . The SI unit of magnetic flux is the weber ...
is the result of a
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an alg ...
between a vector (the
surface normal In geometry, a normal is an object such as a line, ray, or vector that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the (infinite) line perpendicular to the tangent line to the curve ...
) and pseudovector (the
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
). * Helicity is the projection (dot product) of a
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally ...
pseudovector onto the direction of
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
(a true vector). * Pseudoscalar particles, i.e. particles with spin 0 and odd parity, that is, a particle with no intrinsic spin with
wave function A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements ...
that changes sign under parity inversion. Examples are
pseudoscalar meson In high-energy physics, a pseudoscalar meson is a meson with total spin 0 and odd parity (usually notated as Pseudoscalar mesons are commonly seen in proton-proton scattering and proton-antiproton annihilation, and include the pion (), ...
s.


In geometric algebra

A pseudoscalar in a
geometric algebra In mathematics, a geometric algebra (also known as a real Clifford algebra) is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the ...
is a highest- grade element of the algebra. For example, in two dimensions there are two orthogonal basis vectors, e_1, e_2 and the associated highest-grade basis element is :e_1 e_2 = e_{12}. So a pseudoscalar is a multiple of ''e''12. The element ''e''12 squares to −1 and commutes with all even elements – behaving therefore like the imaginary scalar ''i'' in the
complex numbers In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
. It is these scalar-like properties which give rise to its name. In this setting, a pseudoscalar changes sign under a parity inversion, since if :(''e''1, ''e''2) → (''u''1, ''u''2) is a
change of basis In mathematics, an ordered basis of a vector space of finite dimension allows representing uniquely any element of the vector space by a coordinate vector, which is a sequence of scalars called coordinates. If two different bases are consider ...
representing an orthogonal transformation, then :''e''1''e''2 → ''u''1''u''2 = ±''e''1''e''2, where the sign depends on the determinant of the transformation. Pseudoscalars in geometric algebra thus correspond to the pseudoscalars in physics.


References

Geometric algebra Clifford algebras Linear algebra Scalars