HOME
        TheInfoList






Productivity describes various measures of the efficiency of production. Often, a productivity measure is expressed as the ratio of an aggregate output to a single input or an aggregate input used in a production process, i.e. output per unit of input, typically over a specific period of time.[1] Most common example is the (aggregate) labour productivity measure, e.g., such as GDP per worker. There are many different definitions of productivity (including those that are not defined as ratios of output to input) and the choice among them depends on the purpose of the productivity measurement and/or data availability. The key source of difference between various productivity measures is also usually related (directly or indirectly) to how the outputs and the inputs are aggregated into scalars to obtain such a ratio-type measure of productivity.[2]

Productivity is a crucial factor in production performance of firms and nations. Increasing national productivity can raise living standards because more real income improves people's ability to purchase goods and services, enjoy leisure, improve housing and education and contribute to social and environmental programs. Productivity growth can also help businesses to be more profitable.[3]

Partial productivity

Productivity measures that use one class of inputs or factors, but not multiple factors, are called partial productivities.[4] In practice, measurement in production means measures of partial productivity. Interpreted correctly, these components are indicative of productivity development, and approximate the efficiency with which inputs are used in an economy to produce goods and services. However, productivity is only measured partially – or approximately. In a way, the measurements are defective because they do not measure everything, but it is possible to interpret correctly the results of partial productivity and to benefit from them in practical situations. At the company level, typical partial productivity measures are such things as worker hours, materials or energy used per unit of production.[4]

Before widespread use of computer networks, partial productivity was tracked in tabular form and with hand-drawn graphs. Tabulating machines for data processing began being widely used in the 1920s and 1930s and remained in use until mainframe computers became widespread in the late 1960s through the 1970s. By the late 1970s inexpensive computers allowed industrial operations to perform process control and track productivity. Today data collection is largely computerized and almost any variable can be viewed graphically in real time or retrieved for selected time periods.

Labour productivity

Labour productivity levels in 2012 in Europe. OECD
Comparison of average labour productivity levels between the OECD member states. Productivity is measured as GDP per hour worked. Blue bars = higher than OECD-average productivity. Yellow bars = lower than average.

In macroeconomics, a common partial productivity measure is labour productivity. Labour productivity is a revealing indicator of several economic indicators as it offers a dynamic measure of economic growth, competitiveness, and living standards within an economy. It is the measure of labour productivity (and all that this measure takes into account) which helps explain the principal economic foundations that are necessary for both economic growth and social development. In general labour productivity is equal to the ratio between a measure of output volume (gross domestic product or gross value added) and a measure of input use (the total number of hours worked or total employment).

The output measure is typically net output, more specifically the value added by the process under consideration, i.e. the value of outputs minus the value of intermediate inputs. This is done in order to avoid double-counting when an output of one firm is used as an input by another in the same measurement.[5] In macroeconomics the most well-known and used measure of value-added is the Gross Domestic Product or GDP. Increases in it are widely used as a measure of the economic growth of nations and industries. GDP is the income available for paying capital costs, labor compensation, taxes and profits.(OECD 2008,11) Some economists instead use gross value added (GVA); there is normally a strong correlation between GDP and GVA. (Freeman 2008,5)

The measure of input use reflects the time, effort and skills of the workforce. Denominator of the ratio of labour productivity, the input measure is the most important factor that influences the measure of labour productivity. Labour input is measured either by the total number of hours worked of all persons employed or total employment (head count). (Freeman 2008,5) There are both advantages and disadvantages associated with the different input measures that are used in the calculation of labour productivity. It is generally accepted that the total number of hours worked is the most appropriate measure of labour input because a simple headcount of employed persons can hide changes in average hours worked and has difficulties accounting for variations in work such as a part-time contract, leave of absence, overtime, or shifts in normal hours. However, the quality of hours-worked estimates is not always clear. In particular, statistical establishment and household surveys are difficult to use because of their varying quality of hours-worked estimates and their varying degree of international comparability.

GDP per capita is a rough measure of average living standards or economic well-being and is one of the core indicators of economic performance. (OECD 2008, 14) GDP is, for this purpose, only a very rough measure. Maximizing GDP, in principle, also allows maximizing capital usage. For this reason GDP is systematically biased in favour of capital intensive production at the expense of knowledge and labour-intensive production. The use of capital in the GDP-measure is considered to be as valuable as the production's ability to pay taxes, profits and labor compensation. The bias of the GDP is actually the difference between the GDP and the producer income. (Saari 2011,10,16)

Another labour productivity measure, output per worker, is often seen as a proper measure of labour productivity, as here: “Productivity isn't everything, but in the long run it is almost everything. A country's ability to improve its standard of living over time depends almost entirely on its ability to raise its output per worker.“ [6] This measure (output per worker) is, however, more problematic than the GDP or even invalid because this measure allows maximizing all supplied inputs, i.e. materials, services, energy and capital at the expense of producer income.[citation needed]

Multi-factor productivity

Trends in U.S. productivity from labor, capital and multi-factor sources over the 1987-2014 period.

When multiple inputs are considered, the measure is called multi-factor productivity or MFP.[5] Multi-factor productivity is typically estimated using growth accounting. If the inputs specifically are labor and capital, and the outputs are value added intermediate outputs, the measure is called total factor productivity or TFP. TFP measures the residual growth that cannot be explained by the rate of change in the services of labour and capital. MFP replaced the term TFP used in the earlier literature, and both terms continue in use (usually interchangeably) (Hulten 2009,7).

TFP is often interpreted as a rough average measure of productivity, more specifically the contribution to economic growth made by factors such as technical and organisational innovation. (OECD 2008,11). The most famous description is that of Solow's (1957): ”I am using the phrase ’technical change’ as a shorthand expression for any kind of shift in the production function. Thus slowdowns, speed ups, improvements in the education of the labor force and all sorts of things will appear as ’technical change’ ”. The original MFP model (Solow 1957) involves several assumptions: that there is a stable functional relation between inputs and output at the economy-wide level of aggregation, that this function has neoclassical smoothness and curvature properties, that inputs are paid the value of their marginal product, that the function exhibits constant returns to scale, and that technical change has the Hicks’n neutral form (Hulten, 2009,5). In practice, TFP is "a measure of our ignorance", as Abramovitz (1956) put it, precisely because it is a residual. This ignorance covers many components, some wanted (like the effects of technical and organizational innovation), others unwanted (measurement error, omitted variables, aggregation bias, model misspecification) (Hulten 2000,11). Hence the relationship between TFP and productivity remains unclear.[2]

Accounting procedure

Accounting procedure of MFP (Saari 2012)

The MFP measure can be compactly introduced with an accounting procedure in the following calculation. We can use the fixed price values of the real process in the production model to show the accounting procedure. Fixed price values of the real process depict commensurate volumes of the outputs and inputs. When we subtract from the output the intermediate inputs we obtain the value-added. Value-added is used as an output in MFP measure. The principle is to compare the growth of the value-added to the growth of labour and capital input. The formula of the MFP growth is as follows (Schreyer 2005,7):

  • change of MFP = change of output (1.119)
  • minus change of labour input x cost share of labour (1.150 x 0.475 = 0.546)
  • minus change of capital input x cost share of capital (1.030 x 0.525 = 0.541)

As an accounting result the MFP growth is 1.119-0.546-0.541=0.032 or 3.2%.

The residual problem of Multi Factor Productivity was solved by many authors who developed production income

Productivity is a crucial factor in production performance of firms and nations. Increasing national productivity can raise living standards because more real income improves people's ability to purchase goods and services, enjoy leisure, improve housing and education and contribute to social and environmental programs. Productivity growth can also help businesses to be more profitable.[3]

Productivity measures that use one class of inputs or factors, but not multiple factors, are called partial productivities.[4] In practice, measurement in production means measures of partial productivity. Interpreted correctly, these components are indicative of productivity development, and approximate the efficiency with which inputs are used in an economy to produce goods and services. However, productivity is only measured partially – or approximately. In a way, the measurements are defective because they do not measure everything, but it is possible to interpret correctly the results of partial productivity and to benefit from them in practical situations. At the company level, typical partial productivity measures are such things as worker hours, materials or energy used per unit of production.[4]

Before widespread use of computer networks, partial productivity was tracked in tabular form and with hand-drawn graphs. Tabulating machines for data processing began being widely used in the 1920s and 1930s and remained in use until mainframe computers became widespread in the late 1960s through the 1970s. By the late 1970s inexpensive computers allowed industrial operations to perform process control and track productivity. Today data collection is largely computerized and almost any variable can be viewed graphically in real time or retrieved for selected time periods.

Labour productivity

Labour productivity levels in 2012 in Europe. OECD
Comparison of average labour productivity levels between the OECD member states. Productivity is measured as GDP per hour worked. Blue bars = higher than OECD-average productivity. Yellow bars = lower than average.

In macroeconomics, a common partial productivity measure is labour productivity. Labour productivity is a revealing indicator of several economic indicators as it offers a dynamic measure of economic growth, competitiveness, and living standards within an economy. It is the measure of labour productivity (and all that this measure takes into account) which helps explain the principal economic foundations that are necessary for both economic growth and social development. In general labour productivity is equal to the ratio between a measure of output volume (gross domestic product or gross value added) and a me

Before widespread use of computer networks, partial productivity was tracked in tabular form and with hand-drawn graphs. Tabulating machines for data processing began being widely used in the 1920s and 1930s and remained in use until mainframe computers became widespread in the late 1960s through the 1970s. By the late 1970s inexpensive computers allowed industrial operations to perform process control and track productivity. Today data collection is largely computerized and almost any variable can be viewed graphically in real time or retrieved for selected time periods.

In macroeconomics, a common partial productivity measure is labour productivity. Labour productivity is a revealing indicator of several economic indicators as it offers a dynamic measure of economic growth, competitiveness, and living standards within an economy. It is the measure of labour productivity (and all that this measure takes into account) which helps explain the principal economic foundations that are necessary for both economic growth and social development. In general labour productivity is equal to the ratio between a measure of output volume (gross domestic product or gross value added) and a measure of input use (the total number of hours worked or total employment).

The output measure is typically net output, more specifically the value added by the process under consideration, i.e. the value of outputs minus the value of intermediate inputs. This is done in order to avoid double-counting when an output of one firm is used as an input by another in the same measurement.[5] In macroeconomics the most well-known and used measure of value-added is the Gross Domestic Product or GDP. Increases in it are widely used as a measure of the economic growth of nations and industries. GDP is the income available for paying capital costs, labor compensation, taxes and profits.(OECD 2008,11) Some economists instead use gross value added (GVA); there is normally a strong correlation between GDP and GVA. (Freeman 2008,5)

The measure of input use reflects the time, effort and skills of the workforce. Denominator of the ratio of la

The output measure is typically net output, more specifically the value added by the process under consideration, i.e. the value of outputs minus the value of intermediate inputs. This is done in order to avoid double-counting when an output of one firm is used as an input by another in the same measurement.[5] In macroeconomics the most well-known and used measure of value-added is the Gross Domestic Product or GDP. Increases in it are widely used as a measure of the economic growth of nations and industries. GDP is the income available for paying capital costs, labor compensation, taxes and profits.(OECD 2008,11) Some economists instead use gross value added (GVA); there is normally a strong correlation between GDP and GVA. (Freeman 2008,5)

The measure of input use reflects the time, effort and skills of the workforce. Denominator of the ratio of labour productivity, the input measure is the most important factor that influences the measure of labour productivity. Labour input is measured either by the total number of hours worked of all persons employed or total employment (head count). (Freeman 2008,5) There are both advantages and disadvantages associated with the different input measures that are used in the calculation of labour productivity. It is generally accepted that the total number of hours worked is the most appropriate measure of labour input because a simple headcount of employed persons can hide changes in average hours worked and has difficulties accounting for variations in work such as a part-time contract, leave of absence, overtime, or shifts in normal hours. However, the quality of hours-worked estimates is not always clear. In particular, statistical establishment and household surveys are difficult to use because of their varying quality of hours-wo

The measure of input use reflects the time, effort and skills of the workforce. Denominator of the ratio of labour productivity, the input measure is the most important factor that influences the measure of labour productivity. Labour input is measured either by the total number of hours worked of all persons employed or total employment (head count). (Freeman 2008,5) There are both advantages and disadvantages associated with the different input measures that are used in the calculation of labour productivity. It is generally accepted that the total number of hours worked is the most appropriate measure of labour input because a simple headcount of employed persons can hide changes in average hours worked and has difficulties accounting for variations in work such as a part-time contract, leave of absence, overtime, or shifts in normal hours. However, the quality of hours-worked estimates is not always clear. In particular, statistical establishment and household surveys are difficult to use because of their varying quality of hours-worked estimates and their varying degree of international comparability.

GDP per capita is a rough measure of average living standards or economic well-being and is one of the core indicators of economic performance. (OECD 2008, 14) GDP is, for this purpose, only a very rough measure. Maximizing GDP, in principle, also allows maximizing capital usage. For this reason GDP is systematically biased in favour of capital intensive production at the expense of knowledge and labour-intensive production. The use of capital in the GDP-measure is considered to be as valuable as the production's ability to pay taxes, profits and labor compensation. The bias of the GDP is actually the difference between the GDP and the producer income. (Saari 2011,10,16)

Another labour productivity measure, output per worker, is often seen as a proper measure of labour productivity, as here: “Productivity isn't everything, but in the long run it is almost everything. A country's ability to improve its standard of living over time depends almost entirely on its ability to raise its output per worker.“ [6] This measure (output per worker) is, however, more problematic than the GDP or even invalid because this measure allows maximizing all supplied inputs, i.e. materials, services, energy and capital at the expense of producer income.[citation needed]

When multiple inputs are considered, the measure is called multi-factor productivity or MFP.[5] Multi-factor productivity is typically estimated using growth accounting. If the inputs specifically are labor and capital, and the outputs are value added intermediate outputs, the measure is called total factor productivity or TFP. TFP measures the residual growth that cannot be explained by the rate of change in the services of labour and capital. MFP replaced the term TFP used in the earlier literature, and both terms continue in use (usually interchangeably) (Hulten 2009,7).

TFP is often interpreted as a rough average measure of productivity, more specifically the contribution to economic growth made by factors such as technical and organisational innovation. (OECD 2008,11). The most famous description is that of Solow's (1957): ”I am using the phrase ’technical change’ as a shorthand expression for any kind of shift in the production function. Thus slowdowns, speed ups, improvements in the education of the labor force and all sorts of things will appear as ’technical change’ ”. The original MFP model (Solow 1957) involves several assumptions: that there is a stable functional relation between inputs and output at the economy-wide level of aggregation, that this function has neoclassical smoothness and curvature properties, that inputs are paid the value of their marginal product, that the function exhibits constant returns to scale, and that technical change has the Hicks’n neutral form (Hulten, 2009,5). In practice, TFP is "a measure of our ignorance", as Abramovitz (1956) put it, precisely because it is a residual. This ignorance covers many components, some wanted (like the effects of technical and organizational innovation), others unwanted (measurement error, omitted variables, aggregation bias, model misspecification) (Hulten 2000,11). Hence the relationship between TFP and productivity remains unclear.[2]

TFP is often interpreted as a rough average measure of productivity, more specifically the contribution to economic growth made by factors such as technical and organisational innovation. (OECD 2008,11). The most famous description is that of Solow's (1957): ”I am using the phrase ’technical change’ as a shorthand expression for any kind of shift in the production function. Thus slowdowns, speed ups, improvements in the education of the labor force and all sorts of things will appear as ’technical change’ ”. The original MFP model (Solow 1957) involves several assumptions: that there is a stable functional relation between inputs and output at the economy-wide level of aggregation, that this function has neoclassical smoothness and curvature properties, that inputs are paid the value of their marginal product, that the function exhibits constant returns to scale, and that technical change has the Hicks’n neutral form (Hulten, 2009,5). In practice, TFP is "a measure of our ignorance", as Abramovitz (1956) put it, precisely because it is a residual. This ignorance covers many components, some wanted (like the effects of technical and organizational innovation), others unwanted (measurement error, omitted variables, aggregation bias, model misspecification) (Hulten 2000,11). Hence the relationship between TFP and productivity remains unclear.[2]

The MFP measure can be compactly introduced with an accounting procedure in the following calculation. We can use the fixed price values of the real process in the production model to show the accounting procedure. Fixed price values of the real process depict commensurate volumes of the outputs and inputs. When we subtract from the output the intermediate inputs we obtain the value-added. Value-added is used as an output in MFP measure. The principle is to compare the growth of the value-added to the growth of labour and capital input. The formula of the MFP growth is as follows (Schreyer 2005,7):

  • change of MFP = change of output (1.119)
  • minus change of labour input x cost share of labour (1.150 x 0.475 = 0.546)
  • minus change of capital input x cost share of capital (1.030 x 0.525 = 0.541)

As an accounting result the MFP growth is 1.119-0.546-0.541=0.032 or 3.2%.

The residual problem of Multi Factor Productivity was solved by many authors who developed production income formation models where productivity was an integrated factor. For this purpose was needed Total Productivity concept.

Total productivity

In the most immediate sense, productivity is determined by the available technology or know-how for converting resources into outputs, and the way in which resources are organized to produce goods and services. Historically, productivity has improved through Drivers of productivity growth