Poincaré space
   HOME

TheInfoList



OR:

In
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify ...
, a Poincaré space is an ''n''-dimensional
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
with a distinguished element ''µ'' of its ''n''th
homology group In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topolog ...
such that taking the
cap product In algebraic topology the cap product is a method of adjoining a chain of degree ''p'' with a cochain of degree ''q'', such that ''q'' ≤ ''p'', to form a composite chain of degree ''p'' − ''q''. It was introduced by Eduard Čech in 1936, ...
with an element of the ''k''th
cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be view ...
group yields an isomorphism to the (''n'' − ''k'')th homology group. The space is essentially one for which
Poincaré duality In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if ''M'' is an ''n''-dimensional oriented closed manifold (compact ...
is valid; more precisely, one whose singular chain complex forms a
Poincaré complex In mathematics, and especially topology, a Poincaré complex (named after the mathematician Henri Poincaré) is an abstraction of the singular chain complex of a closed, orientable manifold. The singular homology and cohomology groups of a closed, ...
with respect to the distinguished element ''µ''. For example, any closed, orientable, connected manifold ''M'' is a Poincaré space, where the distinguished element is the
fundamental class In mathematics, the fundamental class is a homology class 'M''associated to a connected orientable compact manifold of dimension ''n'', which corresponds to the generator of the homology group H_n(M,\partial M;\mathbf)\cong\mathbf . The fundam ...
Poincaré spaces are used in
surgery theory In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique ''surgery'', while And ...
to analyze and classify manifolds. Not every Poincaré space is a manifold, but the difference can be studied, first by having a normal map from a manifold, and then via
obstruction theory In mathematics, obstruction theory is a name given to two different mathematical theories, both of which yield cohomological invariants. In the original work of Stiefel and Whitney, characteristic classes were defined as obstructions to the ex ...
.


Other uses

Sometimes, ''Poincaré space'' means a
homology sphere Homology may refer to: Sciences Biology *Homology (biology), any characteristic of biological organisms that is derived from a common ancestor *Sequence homology, biological homology between DNA, RNA, or protein sequences * Homologous chrom ...
with non-trivial
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, o ...
—for instance, the Poincaré dodecahedral space in 3 dimensions.


See also

*
Stable normal bundle In surgery theory, a branch of mathematics, the stable normal bundle of a differentiable manifold is an invariant which encodes the stable normal (dually, tangential) data. There are analogs for generalizations of manifold, notably PL-manifolds a ...


References

Algebraic topology Abstract algebra {{Topology-stub