Photonic band gap
   HOME

TheInfoList



OR:

A photonic crystal is an
optical Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultravio ...
nanostructure A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale. In describing nanostructures, it is necessary to differentiate between the number of dimens ...
in which the
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
changes periodically. This affects the propagation of light in the same way that the structure of natural crystals gives rise to
X-ray diffraction X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
and that the atomic lattices (crystal structure) of
semiconductors A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
affect their conductivity of
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s. Photonic crystals occur in nature in the form of
structural coloration Structural coloration in animals, and a few plants, is the production of colour by microscopically structured surfaces fine enough to interfere with visible light instead of pigments, although some structural coloration occurs in combination wi ...
and
animal reflectors Animal reflectors or mirrors are important to the survival of many kinds of animal, and, in some cases, have been mimicked by engineers developing photonic crystals. Examples are the scales of silvery fish, and the tapetum lucidum that causes the ey ...
, and, as artificially produced, promise to be useful in a range of applications. Photonic crystals can be fabricated for one, two, or three dimensions. One-dimensional photonic crystals can be made of
thin film A thin film is a layer of material ranging from fractions of a nanometer ( monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ...
layers deposited on each other. Two-dimensional ones can be made by
photolithography In integrated circuit manufacturing, photolithography or optical lithography is a general term used for techniques that use light to produce minutely patterned thin films of suitable materials over a substrate, such as a silicon wafer, to protec ...
, or by drilling holes in a suitable substrate. Fabrication methods for three-dimensional ones include drilling under different angles, stacking multiple 2-D layers on top of each other, direct laser writing, or, for example, instigating self-assembly of spheres in a matrix and dissolving the spheres. Photonic crystals can, in principle, find uses wherever light must be manipulated. For example, dielectric mirrors are one-dimensional photonic crystals which can produce ultra-high reflectivity mirrors at a specified wavelength. Two-dimensional photonic crystals called photonic-crystal fibers are used for
fiber-optic communication Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of infrared light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is pr ...
, among other applications. Three-dimensional crystals may one day be used in
optical computer Optical computing or photonic computing uses light waves produced by lasers or incoherent sources for data processing, data storage or data communication for computing. For decades, photons have shown promise to enable a higher bandwidth than the ...
s, and could lead to more efficient
photovoltaic cell A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon.
s. Although the energy of light (and all
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
) is quantized in units called
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
s, the analysis of photonic crystals requires only
classical physics Classical physics is a group of physics theories that predate modern, more complete, or more widely applicable theories. If a currently accepted theory is considered to be modern, and its introduction represented a major paradigm shift, then the ...
. "Photonic" in the name is a reference to
photonics Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Though ...
, a modern designation for the study of light (
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultrav ...
) and optical engineering. Indeed, the first research into what we now call photonic crystals may have been as early as 1887 when the English physicist
Lord Rayleigh John William Strutt, 3rd Baron Rayleigh, (; 12 November 1842 – 30 June 1919) was an English mathematician and physicist who made extensive contributions to science. He spent all of his academic career at the University of Cambridge. A ...
experimented with periodic multi-layer
dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the ma ...
stacks, showing they can effect a photonic
band-gap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference (in ...
in one dimension. Research interest grew with work in 1987 by
Eli Yablonovitch Eli Yablonovitch (born 15 December 1946) is an American physicist and engineer who, along with Sajeev John founded the field of photonic crystals in 1987.M.Kapoor (2013Electromagnetic Band Gap Structures page 58 He and his team were the first t ...
and Sajeev John on periodic optical structures with more than one dimension—now called photonic crystals.


Introduction

Photonic crystals are composed of periodic
dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the ma ...
, metallo-dielectric—or even superconductor microstructures or
nanostructure A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale. In describing nanostructures, it is necessary to differentiate between the number of dimens ...
s that affect
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) ...
propagation in the same way that the periodic potential in a
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
crystal affects the propagation of
electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
, determining allowed and forbidden electronic energy bands. Photonic crystals contain regularly repeating regions of high and low
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
. Light waves may propagate through this structure or propagation may be disallowed, depending on their wavelength. Wavelengths that may propagate in a given direction are called ''
modes Mode ( la, modus meaning "manner, tune, measure, due measure, rhythm, melody") may refer to: Arts and entertainment * '' MO''D''E (magazine)'', a defunct U.S. women's fashion magazine * ''Mode'' magazine, a fictional fashion magazine which is ...
'', and the ranges of wavelengths which propagate are called ''bands''. Disallowed bands of
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
s are called ''photonic
band gap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference ( ...
s''. This gives rise to distinct optical phenomena, such as inhibition of
spontaneous emission Spontaneous emission is the process in which a quantum mechanical system (such as a molecule, an atom or a subatomic particle) transits from an excited energy state to a lower energy state (e.g., its ground state) and emits a quantized amount ...
, high-reflecting omni-directional mirrors, and low-loss- waveguiding. The bandgap of photonic crystals can be understood as the destructive interference of multiple reflections of light propagating in the crystal at each interface between layers of high- and low- refractive index regions, akin to the bandgaps of electrons in solids. The periodicity of the photonic crystal structure must be around or greater than half the wavelength (in the medium) of the light waves in order for interference effects to be exhibited.
Visible light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
ranges in wavelength between about 400 nm (violet) to about 700 nm (red) and the resulting wavelength inside a material requires dividing that by the average
index of refraction In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
. The repeating regions of high and low dielectric constant must, therefore, be fabricated at this scale. In one dimension, this is routinely accomplished using the techniques of
thin-film deposition A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ap ...
.


History

Photonic crystals have been studied in one form or another since 1887, but no one used the term ''photonic crystal'' until over 100 years later—after
Eli Yablonovitch Eli Yablonovitch (born 15 December 1946) is an American physicist and engineer who, along with Sajeev John founded the field of photonic crystals in 1987.M.Kapoor (2013Electromagnetic Band Gap Structures page 58 He and his team were the first t ...
and Sajeev John published two milestone papers on photonic crystals in 1987. The early history is well-documented in the form of a story when it was identified as one of the landmark developments in physics by the
American Physical Society The American Physical Society (APS) is a not-for-profit membership organization of professionals in physics and related disciplines, comprising nearly fifty divisions, sections, and other units. Its mission is the advancement and diffusion of k ...
. Before 1987, one-dimensional photonic crystals in the form of periodic multi-layer dielectric stacks (such as the Bragg mirror) were studied extensively.
Lord Rayleigh John William Strutt, 3rd Baron Rayleigh, (; 12 November 1842 – 30 June 1919) was an English mathematician and physicist who made extensive contributions to science. He spent all of his academic career at the University of Cambridge. A ...
started their study in 1887, by showing that such systems have a one-dimensional photonic band-gap, a spectral range of large reflectivity, known as a ''stop-band''. Today, such structures are used in a diverse range of applications—from reflective coatings to enhancing LED efficiency to highly reflective mirrors in certain laser cavities (see, for example, VCSEL). The pass-bands and stop-bands in photonic crystals were first reduced to practice by Melvin M. Weiner who called those crystals "discrete phase-ordered media." Melvin M. Weiner achieved those results by extending Darwin's dynamical theory for x-ray Bragg diffraction to arbitrary wavelengths, angles of incidence, and cases where the incident wavefront at a lattice plane is scattered appreciably in the forward-scattered direction. A detailed theoretical study of one-dimensional optical structures was performed by
Vladimir P. Bykov Vladimir may refer to: Names * Vladimir (name) for the Bulgarian, Croatian, Czech, Macedonian, Romanian, Russian, Serbian, Slovak and Slovenian spellings of a Slavic name * Uladzimir for the Belarusian version of the name * Volodymyr for the Ukra ...
, who was the first to investigate the effect of a photonic band-gap on the spontaneous emission from atoms and molecules embedded within the photonic structure. Bykov also speculated as to what could happen if two- or three-dimensional periodic optical structures were used. The concept of three-dimensional photonic crystals was then discussed by Ohtaka in 1979, who also developed a formalism for the calculation of the photonic band structure. However, these ideas did not take off until after the publication of two milestone papers in 1987 by Yablonovitch and John. Both these papers concerned high-dimensional periodic optical structures, i.e., photonic crystals. Yablonovitch's main goal was to engineer photonic
density of states In solid state physics and condensed matter physics, the density of states (DOS) of a system describes the number of modes per unit frequency range. The density of states is defined as D(E) = N(E)/V , where N(E)\delta E is the number of states i ...
to control the
spontaneous emission Spontaneous emission is the process in which a quantum mechanical system (such as a molecule, an atom or a subatomic particle) transits from an excited energy state to a lower energy state (e.g., its ground state) and emits a quantized amount ...
of materials embedded in the photonic crystal. John's idea was to use photonic crystals to affect localisation and control of light. After 1987, the number of research papers concerning photonic crystals began to grow exponentially. However, due to the difficulty of fabricating these structures at optical scales (see Fabrication challenges), early studies were either theoretical or in the microwave regime, where photonic crystals can be built on the more accessible centimetre scale. (This fact is due to a property of the
electromagnetic fields An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
known as scale invariance. In essence, electromagnetic fields, as the solutions to
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits ...
, have no natural length scale—so solutions for centimetre scale structure at microwave frequencies are the same as for nanometre scale structures at optical frequencies.) By 1991, Yablonovitch had demonstrated the first three-dimensional photonic band-gap in the microwave regime. The structure that Yablonovitch was able to produce involved drilling an array of holes in a transparent material, where the holes of each layer form an inverse diamond structure – today it is known as
Yablonovite Yablonovite is a photonic crystal structure that has an inverse cylindrical holes arranged in a diamond lattice. It was the first 3D photonic crystal to be fabricated with a complete photonic bandgap. It was created in 1991 by Eli Yablonovitch ...
. In 1996, Thomas Krauss demonstrated a two-dimensional photonic crystal at optical wavelengths. This opened the way to fabricate photonic crystals in semiconductor materials by borrowing methods from the semiconductor industry. Pavel Cheben demonstrated a new type of photonic crystal waveguide – subwavelength grating (SWG) waveguide. The SWG waveguide operates in subwavelength region, away from the bandgap. It allows the waveguide properties to be controlled directly by the nanoscale engineering of the resulting
metamaterial A metamaterial (from the Greek word μετά ''meta'', meaning "beyond" or "after", and the Latin word ''materia'', meaning "matter" or "material") is any material engineered to have a property that is not found in naturally occurring materials. ...
while mitigating wave interference effects. This provided “a missing degree of freedom in photonics” and resolved an important limitation in
silicon photonics Silicon photonics is the study and application of photonic systems which use silicon as an optical medium. The silicon is usually patterned with sub-micrometre precision, into microphotonic components. These operate in the infrared, most c ...
which was its restricted set of available materials insufficient to achieve complex optical on-chip functions. Today, such techniques use photonic crystal slabs, which are two dimensional photonic crystals "etched" into slabs of semiconductor.
Total internal reflection Total internal reflection (TIR) is the optical phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely reflect ...
confines light to the slab, and allows photonic crystal effects, such as engineering photonic dispersion in the slab. Researchers around the world are looking for ways to use photonic crystal slabs in integrated computer chips, to improve optical processing of communications—both on-chip and between chips. Autocloning fabrication technique, proposed for
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of Light, visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from ...
and visible range photonic crystals by Sato et al. in 2002, utilizes
electron-beam lithography Electron-beam lithography (often abbreviated as e-beam lithography, EBL) is the practice of scanning a focused beam of electrons to draw custom shapes on a surface covered with an electron-sensitive film called a resist (exposing). The electron ...
and
dry etching Dry etching refers to the removal of material, typically a masked pattern of semiconductor material, by exposing the material to a bombardment of ions (usually a plasma of reactive gases such as fluorocarbons, oxygen, chlorine, boron trichlo ...
: lithographically-formed layers of periodic grooves are stacked by regulated
sputter deposition Sputter deposition is a physical vapor deposition (PVD) method of thin film deposition by the phenomenon of sputtering. This involves ejecting material from a "target" that is a source onto a "substrate" such as a silicon wafer. Resputtering is ...
and etching, resulting in "stationary corrugations" and periodicity.
Titanium dioxide Titanium dioxide, also known as titanium(IV) oxide or titania , is the inorganic compound with the chemical formula . When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. It is a white solid that is insolu ...
/
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is ...
and tantalum pentoxide/silica devices were produced, exploiting their dispersion characteristics and suitability to sputter deposition. Such techniques have yet to mature into commercial applications, but two-dimensional photonic crystals are commercially used in photonic crystal fibres (otherwise known as holey fibres, because of the air holes that run through them). Photonic crystal fibres were first developed by Philip Russell in 1998, and can be designed to possess enhanced properties over (normal)
optical fibres An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means t ...
. Study has proceeded more slowly in three-dimensional than in two-dimensional photonic crystals. This is because of more difficult fabrication. Three-dimensional photonic crystal fabrication had no inheritable semiconductor industry techniques to draw on. Attempts have been made, however, to adapt some of the same techniques, and quite advanced examples have been demonstrated,Review: S. Johnson (MIT
Lecture 3: Fabrication technologies for 3d photonic crystals, a survey
/ref> for example in the construction of "woodpile" structures constructed on a planar layer-by-layer basis. Another strand of research has tried to construct three-dimensional photonic structures from self-assembly—essentially letting a mixture of dielectric nano-spheres settle from solution into three-dimensionally periodic structures that have photonic band-gaps.
Vasily Astratov Vasily Astratov is a full professor of Physics and Optical Science at the University of North Carolina at Charlotte. He became known for launching synthetic opals as new self-assembled photonic crystals for visible light in 1995 in his former gr ...
's group from the
Ioffe Institute The Ioffe Physical-Technical Institute of the Russian Academy of Sciences (for short, Ioffe Institute, russian: Физико-технический институт им. А. Ф. Иоффе) is one of Russia's largest research centers specialized ...
realized in 1995 that natural and synthetic opals are photonic crystals with an incomplete bandgap. The first demonstration of an "inverse opal" structure with a complete photonic bandgap came in 2000, from researchers at the University of Toronto, Canada, and Institute of Materials Science of Madrid (ICMM-CSIC), Spain. The ever-expanding field of natural photonics,
bioinspiration Bioinspiration is the development of novel materials, devices, and structures inspired by solutions found in biological evolution and refinement which has occurred over millions of years. The goal is to improve modeling and simulation of the biolog ...
and
biomimetics Biomimetics or biomimicry is the emulation of the models, systems, and elements of nature for the purpose of solving complex human problems. The terms "biomimetics" and "biomimicry" are derived from grc, βίος (''bios''), life, and μίμησ ...
—the study of natural structures to better understand and use them in design—is also helping researchers in photonic crystals. For example, in 2006 a naturally occurring photonic crystal was discovered in the scales of a Brazilian beetle. Analogously, in 2012 a diamond crystal structure was found in a weevil and a gyroid-type architecture in a butterfly. More recently, gyroid photonic crystals have been found in the feather barbs of
blue-winged leafbird The blue-winged leafbird (''Chloropsis moluccensis'') is a species of leafbird found in forest and second growth throughout Southeast Asia as far east as Borneo and as far south as southern Sumatra. It previously included Jerdon's leafbird (''C. ...
s and are responsible for the bird's shimmery blue coloration.


Construction strategies

The fabrication method depends on the number of dimensions that the photonic bandgap must exist in. File:Pc123.jpg, Comparison of 1D, 2D and 3D photonic crystal structures (from left to right, respectively). File:1d pc.png, Schematic of a 1D photonic crystal structure, made of alternating layers of a high-dielectric constant material and a low-dielectric constant material. These layers are typically quarter wavelength in thickness. File:2d pc.png, 2D photonic crystal structure in a square array. File:2dpc example.svg, Schematic of a 2D photonic crystal made of circular holes. File:3D ֆոտոնային բյուրեղ.png, A woodpile structured 3D photonic crystal. These structures have a three-dimensional bandgap for all polarizations


One-dimensional photonic crystals

To produce a one-dimensional photonic crystal,
thin film A thin film is a layer of material ranging from fractions of a nanometer ( monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ...
layers of different dielectric constant may be periodically deposited on a surface which leads to a band gap in a particular propagation direction (such as normal to the surface). A Bragg grating is an example of this type of photonic crystal. One-dimensional photonic crystals can include layers of
non-linear In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
optical materials in which the non-linear behaviour is accentuated due to field enhancement at wavelengths near a so-called degenerate band edge. This field enhancement (in terms of intensity) can reach N^2 where ''N'' is the total number of layers. However by using layers which include an optically
anisotropic Anisotropy () is the property of a material which allows it to change or assume different properties in different directions, as opposed to isotropy. It can be defined as a difference, when measured along different axes, in a material's physic ...
material, it has been shown that the field enhancement can reach N^4, which, in conjunction with non-linear optics, has potential applications such as in the development of an all- optical switch. A one-dimensional photonic crystal can be implemented using repeated alternating layers of a
metamaterial A metamaterial (from the Greek word μετά ''meta'', meaning "beyond" or "after", and the Latin word ''materia'', meaning "matter" or "material") is any material engineered to have a property that is not found in naturally occurring materials. ...
and vacuum. If the metamaterial is such that the relative
permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ''ε'' (epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in ...
and permeability follow the same wavelength dependence, then the photonic crystal behaves identically for TE and TM modes, that is, for both ''s'' and ''p'' polarizations of light incident at an angle. Recently, researchers fabricated a graphene-based Bragg grating (one-dimensional photonic crystal) and demonstrated that it supports excitation of surface electromagnetic waves in the periodic structure by using 633 nm He-Ne laser as the light source. Besides, a novel type of one-dimensional graphene-dielectric photonic crystal has also been proposed. This structure can act as a far-IR filter and can support low-loss surface plasmons for waveguide and sensing applications. 1D photonic crystals doped with bio-active metals (i.e.
silver Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical ...
) have been also proposed as sensing devices for
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
l contaminants. Similar planar 1D photonic crystals made of polymers have been used to detect volatile organic compounds vapors in atmosphere. In addition to solid-phase photonic crystals, some liquid crystals with defined ordering can demonstrate photonic color. For example, studies have shown several liquid crystals with short- or long-range one-dimensional positional ordering can form photonic structures.


Two-dimensional photonic crystals

In two dimensions, holes may be drilled in a substrate that is transparent to the wavelength of radiation that the bandgap is designed to block. Triangular and square lattices of holes have been successfully employed. The Holey fiber or
photonic crystal fiber Photonic-crystal fiber (PCF) is a class of optical fiber based on the properties of photonic crystals. It was first explored in 1996 at University of Bath, UK. Because of its ability to confine light in hollow cores or with confinement charac ...
can be made by taking cylindrical rods of glass in hexagonal lattice, and then heating and stretching them, the triangle-like airgaps between the glass rods become the holes that confine the modes.


Three-dimensional photonic crystals

There are several structure types that have been constructed: * ''Spheres in a diamond lattice'' *
Yablonovite Yablonovite is a photonic crystal structure that has an inverse cylindrical holes arranged in a diamond lattice. It was the first 3D photonic crystal to be fabricated with a complete photonic bandgap. It was created in 1991 by Eli Yablonovitch ...
* ''The woodpile structure'' – "rods" are repeatedly etched with beam lithography, filled in, and covered with a layer of new material. As the process repeats, the channels etched in each layer are perpendicular to the layer below, and parallel to and out of phase with the channels two layers below. The process repeats until the structure is of the desired height. The fill-in material is then dissolved using an agent that dissolves the fill-in material but not the deposition material. It is generally hard to introduce defects into this structure. * ''Inverse opals'' or ''Inverse Colloidal Crystals''-Spheres (such as
polystyrene Polystyrene (PS) is a synthetic polymer made from monomers of the Aromatic hydrocarbon, aromatic hydrocarbon styrene. Polystyrene can be solid or foamed. General-purpose polystyrene is clear, hard, and brittle. It is an inexpensive resin pe ...
or
silicon dioxide Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
) can be allowed to deposit into a cubic close packed lattice suspended in a
solvent A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for ...
. Then a hardener is introduced that makes a transparent solid out of the volume occupied by the solvent. The spheres are then dissolved with an acid such as
Hydrochloric acid Hydrochloric acid, also known as muriatic acid, is an aqueous solution of hydrogen chloride. It is a colorless solution with a distinctive pungent smell. It is classified as a strong acid. It is a component of the gastric acid in the dige ...
. The colloids can be either spherical or nonspherical. contains in excess of 750,000 polymer nanorods. Light focused on this beam splitter penetrates or is reflected, depending on polarization.


Photonic crystal cavities

Not only band gap, photonic crystals may have another effect if we partially remove the symmetry through the creation a nanosize cavity. This defect allows you to guide or to trap the light with the same function as nanophotonic resonator and it is characterized by the strong dielectric modulation in the photonic crystals. For the waveguide, the propagation of light depends on the in-plane control provided by the photonic band gap and to the long confinement of light induced by dielectric mismatch. For the light trap, the light is strongly confined in the cavity resulting further interactions with the materials. First, if we put a pulse of light inside the cavity, it will be delayed by nano- or picoseconds and this is proportional to the
quality factor In physics and engineering, the quality factor or ''Q'' factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is defined as the ratio of the initial energy stored in the resonator to the energy ...
of the cavity. Finally, if we put an emitter inside the cavity, the emission light also can be enhanced significantly and or even the resonant coupling can go through Rabi oscillation. This is related with cavity quantum electrodynamics and the interactions are defined by the weak and strong coupling of the emitter and the cavity. The first studies for the cavity in one-dimensional photonic slabs are usually in
grating A grating is any regularly spaced collection of essentially identical, parallel, elongated elements. Gratings usually consist of a single set of elongated elements, but can consist of two sets, in which case the second set is usually perpendicul ...
or distributed feedback structures. For two-dimensional photonic crystal cavities, they are useful to make efficient photonic devices in telecommunication applications as they can provide very high quality factor up to millions with smaller-than-wavelength mode volume. For three-dimensional photonic crystal cavities, several methods have been developed including lithographic layer-by-layer approach, surface
ion beam lithography Ion-beam lithography is the practice of scanning a focused beam of ions in a patterned fashion across a surface in order to create very small structures such as integrated circuits or other nanostructures. Details Ion-beam lithography has been f ...
, and micromanipulation technique. All those mentioned photonic crystal cavities that tightly confine light offer very useful functionality for integrated photonic circuits, but it is challenging to produce them in a manner that allows them to be easily relocated. There is no full control with the cavity creation, the cavity location, and the emitter position relative to the maximum field of the cavity while the studies to solve those problems are still ongoing. Movable cavity of nanowire in photonic crystals is one of solutions to tailor this light matter interaction.


Fabrication challenges

Higher-dimensional photonic crystal fabrication faces two major challenges: * Making them with enough precision to prevent scattering losses blurring the crystal properties * Designing processes that can robustly mass-produce the crystals One promising fabrication method for two-dimensionally periodic photonic crystals is a photonic-crystal fiber, such as a ''holey fiber''. Using fiber draw techniques developed for communications fiber it meets these two requirements, and photonic crystal fibres are commercially available. Another promising method for developing two-dimensional photonic crystals is the so-called photonic crystal slab. These structures consist of a slab of material—such as
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ...
—that can be patterned using techniques from the semiconductor industry. Such chips offer the potential to combine photonic processing with electronic processing on a single chip. For three dimensional photonic crystals, various techniques have been used—including
photolithography In integrated circuit manufacturing, photolithography or optical lithography is a general term used for techniques that use light to produce minutely patterned thin films of suitable materials over a substrate, such as a silicon wafer, to protec ...
and etching techniques similar to those used for
integrated circuits An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tin ...
. Some of these techniques are already commercially available. To avoid the complex machinery of nanotechnological methods, some alternate approaches involve growing photonic crystals from colloidal crystals as self-assembled structures. Mass-scale 3D photonic crystal films and fibres can now be produced using a shear-assembly technique that stacks 200–300 nm colloidal polymer spheres into perfect films of fcc lattice. Because the particles have a softer transparent rubber coating, the films can be stretched and molded, tuning the photonic bandgaps and producing striking structural
color Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associ ...
effects.


Computing photonic band structure

The photonic band gap (PBG) is essentially the gap between the air-line and the dielectric-line in the
dispersion relation In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given t ...
of the PBG system. To design photonic crystal systems, it is essential to engineer the location and size of the
bandgap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference (i ...
by computational modeling using any of the following methods: *
Plane wave expansion method Plane wave expansion method (PWE) refers to a computational technique in electromagnetics to solve the Maxwell's equations by formulating an eigenvalue problem out of the equation. This method is popular among the photonic crystal community as a m ...
*
Finite element method The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat ...
* Finite difference time domain method * Order-n spectral methodRichard M Martin
Linear Scaling 'Order-N' Methods in Electronic Structure Theory
/ref> *
KKR method KKR & Co. Inc., also known as Kohlberg Kravis Roberts & Co., is an American global investment company that manages multiple alternative asset classes, including private equity, energy, infrastructure, real estate, credit, and, through its strat ...
*
Bloch wave – MoM method A frequency-selective surface (FSS) is any thin, repetitive surface (such as the screen on a microwave oven) designed to reflect, transmit or absorb electromagnetic fields based on the frequency of the field. In this sense, an FSS is a type of ...
Essentially, these methods solve for the frequencies (normal modes) of the photonic crystal for each value of the propagation direction given by the wave vector, or vice versa. The various lines in the band structure, correspond to the different cases of ''n'', the band index. For an introduction to photonic band structure, see K. Sakoda's and Joannopoulos books. The plane wave expansion method can be used to calculate the band structure using an
eigen Eigen may refer to: * Eigen (C++ library), computer programming library for matrix and linear algebra operations * Eigen Technologies, the Document AI software company * Eigen, Schwyz, settlement in the municipality of Alpthal in the canton of S ...
formulation of the Maxwell's equations, and thus solving for the eigen frequencies for each of the propagation directions, of the wave vectors. It directly solves for the dispersion diagram. Electric field strength values can also be calculated over the spatial domain of the problem using the eigen vectors of the same problem. For the picture shown to the right, corresponds to the band-structure of a 1D distributed Bragg reflector ( DBR) with air-core interleaved with a dielectric material of relative permittivity 12.25, and a lattice period to air-core thickness ratio (d/a) of 0.8, is solved using 101 planewaves over the first irreducible
Brillouin zone In mathematics and solid state physics, the first Brillouin zone is a uniquely defined primitive cell in reciprocal space. In the same way the Bravais lattice is divided up into Wigner–Seitz cells in the real lattice, the reciprocal lattice ...
. To speed calculation of the frequency band structure, the Reduced Bloch Mode Expansion (RBME) method can be used. The RBME method applies "on top" of any of the primary expansion methods mentioned above. For large unit cell models, the RBME method can reduce time for computing the band structure by up to two orders of magnitude.


Applications

Photonic crystals are attractive optical materials for controlling and manipulating light flow. One dimensional photonic crystals are already in widespread use, in the form of
thin-film optics Thin-film optics is the branch of optics that deals with very thin structured layers of different materials. In order to exhibit thin-film optics, the thickness of the layers of material must be similar to the coherence length; for visible l ...
, with applications from low and high reflection coatings on lenses and mirrors to colour changing paints and
inks Ink is a gel, sol, or solution that contains at least one colorant, such as a dye or pigment, and is used to color a surface to produce an image, text, or design. Ink is used for drawing or writing with a pen, brush, reed pen, or quill. Thicke ...
. Higher-dimensional photonic crystals are of great interest for both fundamental and applied research, and the two dimensional ones are beginning to find commercial applications. The first commercial products involving two-dimensionally periodic photonic crystals are already available in the form of photonic-crystal fibers, which use a microscale structure to confine light with radically different characteristics compared to conventional
optical fiber An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass ( silica) or plastic to a diameter slightly thicker than that of a human hair Hair is a protein filament that grows ...
for applications in nonlinear devices and guiding exotic wavelengths. The three-dimensional counterparts are still far from commercialization but may offer additional features such as optical nonlinearity required for the operation of optical transistors used in
optical computer Optical computing or photonic computing uses light waves produced by lasers or incoherent sources for data processing, data storage or data communication for computing. For decades, photons have shown promise to enable a higher bandwidth than the ...
s, when some technological aspects such as manufacturability and principal difficulties such as disorder are under control. SWG photonic crystal waveguides have facilitated new integrated photonic devices for controlling transmission of light signals in photonic integrated circuits, including fibre-chip couplers, waveguide crossovers, wavelength and mode multiplexers, ultra-fast optical switches, athermal waveguides, biochemical sensors, polarization management circuits, broadband interference couplers, planar waveguide lenses, anisotropic waveguides, nanoantennas and optical phased arrays. SWG nanophotonic couplers permit highly-efficient and polarization-independent coupling between photonic chips and external devices. They have been adopted for fibre-chip coupling in volume optoelectronic chip manufacturing. These coupling interfaces are particularly important because every photonic chip needs to be optically connected with the external world and the chips themselves appear in many established and emerging applications, such as 5G networks, data center interconnects, chip-to-chip interconnects, metro- and long-haul telecommunication systems, and automotive navigation. In addition to the foregoing, photonic crystals have been proposed as platforms for the development of solar cells and optical sensors, including chemical sensors and biosensors.


See also

* * * * * * * * * * * * * * *


References


External links


Business report on Photonic Crystals in Metamaterials
– see also Scope and Analyst
Photonic crystals tutorials by Prof S. Johnson at MIT



Invisibility cloak created in 3-D; Photonic crystals
BBC) {{DEFAULTSORT:Photonic Crystal Condensed matter physics Metamaterials Photonics