Phase contrast
   HOME

TheInfoList



OR:

Phase-contrast imaging is a method of
imaging Imaging is the representation or reproduction of an object's form; especially a visual representation (i.e., the formation of an image). Imaging technology is the application of materials and methods to create, preserve, or duplicate images. ...
that has a range of different applications. It exploits differences in the
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
of different materials to differentiate between structures under analysis. In conventional
light microscopy Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of micr ...
, phase contrast can be employed to distinguish between structures of similar transparency, and to examine crystals on the basis of their double refraction. This has uses in biological, medical and geological science. In X-ray tomography, the same physical principles can be used to increase image contrast by highlighting small details of differing refractive index within structures that are otherwise uniform. In
transmission electron microscopy Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a ...
(TEM), phase contrast enables very high resolution (HR) imaging, making it possible to distinguish features a few Angstrom apart (at this point highest resolution is 40 pm).


Light microscopy

Phase contrast takes advantage of the fact that different structures have different refractive indices, and either bend, refract or delay the light passage through the sample by different amounts. The changes in the light passage result in waves being 'out of phase' with others. This effect can be transformed by phase contrast microscopes into amplitude differences that are observable in the eyepieces and are depicted effectively as darker or brighter areas of the resultant image. Phase contrast is used extensively in optical microscopy, in both biological and geological sciences. In biology, it is employed in viewing unstained biological samples, making it possible to distinguish between structures that are of similar transparency or refractive indices. In geology, phase contrast is exploited to highlight differences between mineral crystals cut to a standardised thin section (usually 30 
μm The micrometre ( international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer ( American spelling), also commonly known as a micron, is a unit of length in the International System of Uni ...
) and mounted under a light microscope. Crystalline materials are capable of exhibiting double refraction, in which light rays entering a crystal are split into two beams that may exhibit different refractive indices, depending on the
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles ...
at which they enter the crystal. The phase contrast between the two rays can be detected with the human eye using particular optical filters. As the exact nature of the double refraction varies for different crystal structures, phase contrast aids in the identification of minerals.


X-ray imaging

There are four main techniques for X-ray phase-contrast imaging, which use different principles to convert phase variations in the X-rays emerging from the object into intensity variations at an
X-ray detector X-ray detectors are devices used to measure the flux, spatial distribution, spectrum, and/or other properties of X-rays. Detectors can be divided into two major categories: imaging detectors (such as photographic plates and X-ray film (photograp ...
. Propagation-based phase contrast uses free-space
propagation Propagation can refer to: *Chain propagation in a chemical reaction mechanism *Crack propagation, the growth of a crack during the fracture of materials * Propaganda, non-objective information used to further an agenda * Reproduction, and other for ...
to get edge enhancement, Talbot and polychromatic far-field interferometry uses a set of
diffraction grating In optics, a diffraction grating is an optical component with a periodic structure that diffracts light into several beams travelling in different directions (i.e., different diffraction angles). The emerging coloration is a form of structur ...
s to measure the derivative of the phase, refraction-enhanced imaging uses an analyzer crystal also for differential measurement, and x-ray
interferometry Interferometry is a technique which uses the '' interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber o ...
uses a crystal
interferometer Interferometry is a technique which uses the '' interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber o ...
to measure the phase directly. The advantages of these methods compared to normal absorption-contrast X-ray imaging is higher contrast for low-absorbing materials (because phase shift is a different mechanism than absorption) and a contrast-to-noise relationship that increases with spatial frequency (because many phase-contrast techniques detect the first or second derivative of the phase shift), which makes it possible to see smaller details One disadvantage is that these methods require more sophisticated equipment, such as
synchrotron A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed ...
or microfocus X-ray sources, x-ray optics, and high resolution X-ray detectors. This sophisticated equipment provides the sensitivity required to differentiate between small variations in the refractive index of X-rays passing through different media. The refractive index is normally smaller than 1 with a difference from 1 between and . All of these methods produce images that can be used to calculate the projections (integrals) of the refractive index in the imaging direction. For propagation-based phase contrast there are phase-retrieval algorithms, for Talbot interferometry and refraction-enhanced imaging the image is integrated in the proper direction, and for X-ray interferometry phase unwrapping is performed. For this reason they are well suited for
tomography Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, astrophysics, ...
, i.e. reconstruction of a 3D-map of the refractive index of the object from many images at slightly different angles. For X-ray radiation the difference from 1 of the refractive index is essentially proportional to the
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
of the material. Synchrotron X-ray tomography can employ phase contrast imaging to enable imaging of the interior surfaces of objects. In this context, phase contrast imaging is used to enhance the contrast that would normally be possible from conventional radiographic imaging. A difference in the refractive index between a detail and its surroundings causes a phase shift between the light wave that travels through the detail and that which travels outside the detail. An interference pattern results, marking out the detail. This method has been used to image
Precambrian The Precambrian (or Pre-Cambrian, sometimes abbreviated pꞒ, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of th ...
metazoan Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and go through an ontogenetic stage in ...
embryo An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male spe ...
s from the Doushantuo Formation in China, allowing the internal structure of delicate microfossils to be imaged without destroying the original specimen.


Transmission electron microscopy

In the field of
transmission electron microscopy Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a ...
, phase-contrast imaging may be employed to image columns of individual atoms. This ability arises from the fact that the atoms in a material diffract electrons as the electrons pass through them (the relative phases of the electrons change upon transmission through the sample), causing
diffraction Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
contrast in addition to the already present contrast in the transmitted beam. Phase-contrast imaging is the highest resolution imaging technique ever developed, and can allow for resolutions of less than one angstrom (less than 0.1 nanometres). It thus enables the direct viewing of columns of atoms in a crystalline material. The interpretation of phase-contrast images is not a straightforward task. Deconvolving the contrast seen in an HR image to determine which features are due to which atoms in the material can rarely, if ever, be done by eye. Instead, because the combination of contrasts due to multiple diffracting elements and planes and the transmitted beam is complex, computer simulations are used to determine what sort of contrast different structures may produce in a phase-contrast image. Thus, a reasonable amount of information about the sample needs to be understood before a phase contrast image can be properly interpreted, such as a conjecture as to what
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric pattern ...
the material has. Phase-contrast images are formed by removing the
objective Objective may refer to: * Objective (optics), an element in a camera or microscope * ''The Objective'', a 2008 science fiction horror film * Objective pronoun, a personal pronoun that is used as a grammatical object * Objective Productions, a Brit ...
aperture In optics, an aperture is a hole or an opening through which light travels. More specifically, the aperture and focal length of an optical system determine the cone angle of a bundle of rays that come to a focus in the image plane. An ...
entirely or by using a very large objective aperture. This ensures that not only the transmitted beam, but also the diffracted ones are allowed to contribute to the image. Instruments that are specifically designed for phase-contrast imaging are often called
HRTEM High-resolution transmission electron microscopy is an imaging mode of specialized transmission electron microscopes that allows for direct imaging of the atomic structure of samples. It is a powerful tool to study properties of materials on the a ...
s (high resolution transmission electron microscopes), and differ from analytical TEMs mainly in the design of the electron beam column. Whereas analytical TEMs employ additional detectors attached to the column for spectroscopic measurements, HRTEMs have little or no additional attachments so as to ensure a uniform
electromagnetic In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
environment all the way down the column for each beam leaving the sample (transmitted and diffracted). Because phase-contrast imaging relies on differences in phase between electrons leaving the sample, any additional phase shifts that occur between the sample and the viewing screen can make the image impossible to interpret. Thus, a very low degree of lens aberration is also a requirement for HRTEMs, and advances in
spherical aberration In optics, spherical aberration (SA) is a type of aberration found in optical systems that have elements with spherical surfaces. Lenses and curved mirrors are prime examples, because this shape is easier to manufacture. Light rays that strik ...
(Cs) correction have enabled a new generation of HRTEMs to reach resolutions once thought impossible.


See also


References

{{Reflist Imaging Microscopy