Persistent current
   HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, persistent current refers to a perpetual electric current, not requiring an external power source. Such a current is impossible in normal electrical devices, since all commonly-used conductors have a non-zero resistance, and this resistance would rapidly dissipate any such current as heat. However, in superconductors and some mesoscopic devices, persistent currents are possible and observed due to quantum effects. In resistive materials, persistent currents can appear in microscopic samples due to size effects. Persistent currents are widely used in the form of superconducting magnets.


In magnetized objects

In electromagnetism, all magnetizations can be seen as microscopic persistent currents. By definition a magnetization \mathbf can be replaced by its corresponding microscopic form, which is an electric current density: : \mathbf = \nabla\times\mathbf . This current is a bound current, not having any charge accumulation associated with it since it is divergenceless. What this means is that any permanently magnetized object, for example a piece of
lodestone Lodestones are naturally magnetized pieces of the mineral magnetite. They are naturally occurring magnets, which can attract iron. The property of magnetism was first discovered in antiquity through lodestones. Pieces of lodestone, suspen ...
, can be considered to have persistent electric currents running throughout it (the persistent currents are generally concentrated near the surface). The converse is also true: any persistent electric current is divergence-free, and can therefore be represented instead by a magnetization. Therefore, in the macroscopic
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. ...
, it is purely a choice of mathematical convenience, whether to represent persistent currents as magnetization or vice versa. In the microscopic formulation of Maxwell's equations, however, \mathbf does not appear and so any magnetizations must be instead represented by bound currents.


In superconductors

In superconductors, charge can flow without any resistance. It is possible to make pieces of superconductor with a large built-in persistent current, either by creating the superconducting state (cooling the material) while charge is flowing through it, or by changing the magnetic field around the superconductor after creating the superconducting state. This principle is used in superconducting electromagnets to generate sustained high magnetic fields that only require a small amount of power to maintain. The persistent current was first identified by H. Kamerlingh Onnes, and attempts to set a lower bound on their duration have reached values of over 100,000 years.


In resistive conductors

Surprisingly, it is also possible to have tiny persistent currents inside resistive metals that are placed in a magnetic field, even in metals that are nominally "non-magnetic". The current is the result of a
quantum mechanical Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, qua ...
effect that influences how
electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
travel through metals, and arises from the same kind of motion that allows the electrons inside an
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, ...
to orbit the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom * Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
forever. This type of persistent current is a
mesoscopic Mesoscopic physics is a subdiscipline of condensed matter physics that deals with materials of an intermediate size. These materials range in size between the nanoscale for a quantity of atoms (such as a molecule) and of materials measuring micr ...
low temperature effect: the magnitude of the current becomes appreciable when the size of the metallic system is reduced to the scale of the electron quantum phase
coherence length In physics, coherence length is the propagation distance over which a coherent wave (e.g. an electromagnetic wave) maintains a specified degree of coherence. Wave interference is strong when the paths taken by all of the interfering waves dif ...
and the thermal length. Persistent currents decrease with increasing temperature and will vanish exponentially above a temperature known as the Thouless temperature. This temperature scales as the inverse of the circuit diameter squared. Consequently, it has been suggested that persistent currents could flow up to room temperature and above in nanometric metal structures such as metal (Au, Ag,...) nanoparticles. This hypothesis has been offered for explaining the singular magnetic properties of nanoparticles made of gold and other metals. Unlike with superconductors, these persistent currents do not appear at zero magnetic field, as the current fluctuates symmetrically between positive and negative values; the magnetic field breaks that symmetry and allows a nonzero average current. Although the persistent current in an individual ring is largely unpredictable due to uncontrolled factors like the disorder configuration, it has a slight bias so that an average persistent current appears even for an
ensemble Ensemble may refer to: Art * Architectural ensemble * Ensemble (album), ''Ensemble'' (album), Kendji Girac 2015 album * Ensemble (band), a project of Olivier Alary * Ensemble cast (drama, comedy) * Ensemble (musical theatre), also known as the ...
of conductors with different disorder configurations. This kind of persistent current was first predicted to be experimentally observable in micrometer-scale rings in 1983 by Markus Büttiker,
Yoseph Imry Yoseph Imry (Hebrew: יוסף אמרי; born 23 February 1939 – 29 May 2018) was an Israeli physicist. He was best known for taking part in the foundation of mesoscopic physics, a relatively new branch of condensed matter physics. It is con ...
, and
Rolf Landauer Rolf William Landauer (February 4, 1927 – April 27, 1999) was a German-American physicist who made important contributions in diverse areas of the thermodynamics of information processing, condensed matter physics, and the conductivity of disor ...
. Because the effect requires the phase coherence of electrons around the entire ring, the current can not be observed when the ring is interrupted by an
ammeter An ammeter (abbreviation of ''Ampere meter'') is an instrument used to measure the current in a circuit. Electric currents are measured in amperes (A), hence the name. For direct measurement, the ammeter is connected in series with the circuit ...
and thus the current must by measured indirectly through its magnetization. In fact, all metals exhibit some magnetization in magnetic fields due a combination of de Haas–van Alphen effect, core
diamagnetism Diamagnetic materials are repelled by a magnetic field; an applied magnetic field creates an induced magnetic field in them in the opposite direction, causing a repulsive force. In contrast, paramagnetic and ferromagnetic materials are attracte ...
, Landau diamagnetism, Pauli paramagnetism, which all appear regardless of the shape of the metal. The additional magnetization from persistent current becomes strong with a connected ring shape, and for example would disappear if the ring were cut. Experimental evidence of the observation of persistent currents were first reported in 1990 by a research group at
Bell Laboratories Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mult ...
using a superconducting resonator to study an array of
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
rings. Subsequent measurements using
superconducting Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
resonators and extremely sensitive magnetometers known as superconducting quantum interference devices (SQUIDs) produced inconsistent results. In 2009, physicists at Stanford University using a scanning SQUID and at
Yale University Yale University is a Private university, private research university in New Haven, Connecticut. Established in 1701 as the Collegiate School, it is the List of Colonial Colleges, third-oldest institution of higher education in the United Sta ...
using microelectromechanical
cantilevers A cantilever is a rigid structural element that extends horizontally and is supported at only one end. Typically it extends from a flat vertical surface such as a wall, to which it must be firmly attached. Like other structural elements, a canti ...
reported measurements of persistent currents in nanoscale
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
and
aluminum Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It ha ...
rings respectively that both showed a strong agreement with the simple theory for non-interacting electrons. The 2009 measurements both reported greater sensitivity to persistent currents than previous measurements and made several other improvements to persistent current detection. The scanning SQUID's ability to change the position of the SQUID detector relative to the ring sample allowed for a number of rings to be measured on one sample chip and better extraction of the current signal from
background noise Background noise or ambient noise is any sound other than the sound being monitored (primary sound). Background noise is a form of noise pollution or interference. Background noise is an important concept in setting noise levels. Background n ...
. The cantilever detector's mechanical detection technique made it possible to measure the rings in a clean
electromagnetic In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
environment over a large range of magnetic field and also to measure a number of rings on one sample chip.


See also

* * * *


References

{{reflist, 2 Mesoscopic physics Electrical engineering Electric current