Particle physicist
   HOME

TheInfoList



OR:

Particle physics or high energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three Generation (particle physics), generations of fermions, but ordinary matter is made only from the first fermion generation. The first generation consists of Up quark, up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quarks cannot exist on their own but form hadrons. Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons. Two baryons, the proton and the neutron, make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredths of a microsecond. They occur after collisions between particles made of quarks, such as fast-moving protons and neutrons in cosmic rays. Mesons are also produced in cyclotrons or other particle accelerators. Particles have corresponding antiparticles with the same mass but with opposite electric charges. For example, the antiparticle of the electron is the positron (also known as an antielectron). The electron has a negative electric charge, the positron has a positive charge. These antiparticles can theoretically form a corresponding form of matter called antimatter. Some particles, such as the photon, are their own antiparticle. These elementary particles are excitations of the Field (physics)#Quantum fields, quantum fields that also govern their interactions. The dominant theory explaining these fundamental particles and fields, along with their dynamics, is called the Standard Model. The Quantum gravity, reconciliation of gravity to the current particle physics theory is not solved; many theories have addressed this problem, such as loop quantum gravity, string theory and Supersymmetry, supersymmetry theory. Practical particle physics is the study of these particles in Radioactive decay, radioactive processes and in particle accelerators such as the Large Hadron Collider. Theoretical particle physics is the study of these particles in the context of cosmology and quantum mechanics, quantum theory. The two are closely interrelated: the Higgs boson was postulated by theoretical particle physicists and its presence confirmed by practical experiments.


History

The idea that all matter is fundamentally composed of elementary particles dates from at least the 6th century BC. In the 19th century, John Dalton, through his work on stoichiometry, concluded that each element of nature was composed of a single, unique type of particle. The word ''atom'', after the Greek word ''wikt:ἄτομος, atomos'' meaning "indivisible", has since then denoted the smallest particle of a chemical element, but physicists soon discovered that atoms are not, in fact, the fundamental particles of nature, but are conglomerates of even smaller particles, such as the electron. The early 20th century explorations of nuclear physics and quantum physics led to proofs of nuclear fission in 1939 by Lise Meitner (based on experiments by Otto Hahn), and nuclear fusion by Hans Bethe in that same year; both discoveries also led to the development of nuclear weapons. Throughout the 1950s and 1960s, a bewildering variety of particles were found in collisions of particles from beams of increasingly high energy. It was referred to informally as the "particle zoo". Important discoveries such as the CP violation by James Cronin and Val Fitch brought new questions to Baryon asymmetry, matter-antimatter imbalance. After the formulation of the Standard Model during the 1970s, physicists clarified the origin of the particle zoo. The large number of particles was explained as combinations of a (relatively) small number of more fundamental particles and framed in the context of Quantum field theory, quantum field theories. This reclassification marked the beginning of modern particle physics.


Standard Model

The current state of the classification of all elementary particles is explained by the Standard Model, which gained widespread acceptance in the mid-1970s after experimental confirmation of the existence of quarks. It describes the strong interaction, strong, weak interaction, weak, and electromagnetism, electromagnetic fundamental interactions, using mediating gauge bosons. The species of gauge bosons are eight gluons, W and Z bosons, , and bosons, and the photon. The Standard Model also contains 24 fundamental particle, fundamental fermions (12 particles and their associated anti-particles), which are the constituents of all matter. Finally, the Standard Model also predicted the existence of a type of boson known as the Higgs boson. On 4 July 2012, physicists with the Large Hadron Collider at CERN announced they had found a new particle that behaves similarly to what is expected from the Higgs boson. The Standard Model, as currently formulated, has 61 elementary particles. Those elementary particles can combine to form composite particles, accounting for the hundreds of other species of particles that have been discovered since the 1960s. The Standard Model has been found to agree with almost all the experimental tests conducted to date. However, most particle physicists believe that it is an incomplete description of nature and that a more fundamental theory awaits discovery (See Theory of Everything). In recent years, measurements of neutrino rest mass, mass have provided the first experimental deviations from the Standard Model, since neutrinos do not have mass in the Standard Model.


Subatomic particles

Modern particle physics research is focused on subatomic particles, including atomic constituents, such as electrons, protons, and neutrons (protons and neutrons are composite particles called baryons, made of quarks), that are produced by Radioactive decay, radioactive and scattering processes; such particles are photons, neutrinos, and muons, as well as a wide range of exotic particles. All particles and their interactions observed to date can be described almost entirely by the Standard Model. Dynamics of particles are also governed by quantum mechanics; they exhibit wave–particle duality, displaying particle-like behaviour under certain experimental conditions and wave-like behaviour in others. In more technical terms, they are described by quantum state vectors in a Hilbert space, which is also treated in quantum field theory. Following the convention of particle physicists, the term ''elementary particles'' is applied to those particles that are, according to current understanding, presumed to be indivisible and not composed of other particles.


Quarks and leptons

Ordinary matter is made from first-Generation (particle physics), generation quarks (Up quark, up, Down quark, down) and leptons (electron, electron neutrino). Collectively, quarks and leptons are called fermions, because they have a quantum spin of half-integers (-1/2, 1/2, 3/2, etc.). This cause the fermions to obey the Pauli exclusion principle, where no two particles may occupy the same quantum state. Quarks have fractional Elementary charge, elementary electric charge (-1/3 or 2/3) and leptons have whole-numbered electric charge (0 or 1). Quarks also have color charge, which is labeled arbitrarily with no correlation to actual light color as red, green and blue. Because the interactions between the quarks stores energy which can convert to other particles when the quarks are far apart enough, quarks cannot be observed independently. This is called color confinement. There are three known generations of quarks (up and down, Strange quark, strange and Charm quark, charm, Top quark, top and Bottom quark, bottom) and leptons (electron and its neutrino, muon and Muon neutrino, its neutrino, Tau (particle), tau and Tau neutrino, its neutrino), with strong indirect evidence that the fourth generation of fermions doesn't exist.


Bosons

Bosons are the Force carrier, mediators or carriers of fundamental interactions, such as electromagnetism, the weak interaction, and the strong interaction. Electromagnetism is mediated by the photon, the Quantum, quanta of light. The weak interaction is mediated by the W and Z bosons. The strong interaction is mediated by the gluon, which can link quarks together to form composite particles. Due to the aforementioned color confinement, gluons are never observed independently. The Higgs boson gives mass to the W and Z bosons via the Higgs mechanism – the gluon and photon are expected to be Massless particle, massless. All bosons have an integer quantum spin (0 and 1) and can have the same quantum state.


Antiparticles and color charge

Most aforementioned particles have corresponding antiparticles, which compose antimatter. Normal particles have positive Lepton number, lepton or baryon number, and antiparticles have these numbers negative. Most properties of corresponding antiparticles and particles are the same, with a few gets reversed; the electron's antiparticle, positron, has an opposite charge. To differentiate between antiparticles and particles, a plus or negative sign is added in superscript. For example, the electron and the positron are denoted and . When a particle and an antiparticle interacts with each other, they are Annihilation, annihilated and convert to other particles. Some particles have no antiparticles, such as the photon or gluon. Quarks and gluons additionally have color charges, which influences the strong interaction. Quark's color charges are called red, green and blue (though the particle itself have no physical color), and in antiquarks are called antired, antigreen and antiblue. The gluon can have Gluon, eight color charges, which are the result of quarks' interactions to form composite particles (gauge symmetry SU(3)).Part III of


Composite

The neutrons and protons in the Atomic nucleus, atomic nuclei are baryons – the neutron is composed of two down quarks and one up quark, and the proton is composed of two up quarks and one down quark. A baryon is composed of three quarks, and a meson is composed of two quarks (one normal, one anti). Baryons and mesons are collectively called hadrons. Quarks inside hadrons are governed by the strong interaction, thus are subjected to quantum chromodynamics (color charges). The Bound state, bounded quarks must have their color charge to be neutral, or "white" for analogy with Additive color, mixing the primary colors. More exotic hadrons can have other types, arrangement or number of quarks (tetraquark, pentaquark). A normal atom is made from protons, neutrons and electrons. By modifying the particles inside a normal atom, exotic atoms can be formed. A simple example would be the hydrogen-4.1, which has one of its electrons replaced with a muon.


Hypothetical

Graviton is a hypothetical particle that can mediate the gravitational interaction, but it has not been detected nor completely reconciled with current theories.


Experimental laboratories

The world's major particle physics laboratories are: * Brookhaven National Laboratory (Long Island, United States). Its main facility is the Relativistic Heavy Ion Collider (RHIC), which collides Relativistic nuclear collisions, heavy ions such as gold ions and polarized protons. It is the world's first heavy ion collider, and the world's only polarized proton collider. * Budker Institute of Nuclear Physics (Novosibirsk, Russia). Its main projects are now the electron-positron colliders VEPP-2000, operated since 2006, and VEPP-4, started experiments in 1994. Earlier facilities include the first electron–electron beam–beam collider VEP-1, which conducted experiments from 1964 to 1968; the electron-positron colliders VEPP-2, operated from 1965 to 1974; and, its successor VEPP-2M, performed experiments from 1974 to 2000. * CERN (European Organization for Nuclear Research) (France, Franco-Switzerland, Swiss border, near Geneva). Its main project is now the Large Hadron Collider (LHC), which had its first beam circulation on 10 September 2008, and is now the world's most energetic collider of protons. It also became the most energetic collider of heavy ions after it began colliding lead ions. Earlier facilities include the Large Electron–Positron Collider (LEP), which was stopped on 2 November 2000 and then dismantled to give way for LHC; and the Super Proton Synchrotron, which is being reused as a pre-accelerator for the LHC and for fixed-target experiments. * DESY (Deutsches Elektronen-Synchrotron) (Hamburg, Germany). Its main facility was the Hadron Elektron Ring Anlage (HERA), which collided electrons and positrons with protons. The accelerator complex is now focused on the production of synchrotron radiation with PETRA III, FLASH and the European XFEL. * Fermilab, Fermi National Accelerator Laboratory (Fermilab) (Batavia, Illinois, Batavia, United States). Its main facility until 2011 was the Tevatron, which collided protons and antiprotons and was the highest-energy particle collider on earth until the Large Hadron Collider surpassed it on 29 November 2009. * Institute of High Energy Physics (IHEP) (Beijing, China). IHEP manages a number of China's major particle physics facilities, including the Beijing Electron–Positron Collider II(BEPC II), the Beijing Spectrometer (BES), the Beijing Synchrotron Radiation Facility (BSRF), the International Cosmic-Ray Observatory at Yangbajing in Tibet, the Daya Bay Reactor Neutrino Experiment, the China Spallation Neutron Source, the Hard X-ray Modulation Telescope (HXMT), and the Accelerator-driven Sub-critical System (ADS) as well as the Jiangmen Underground Neutrino Observatory (JUNO). * KEK (Tsukuba, Ibaraki, Tsukuba, Japan). It is the home of a number of experiments such as the K2K experiment, a neutrino oscillation experiment and Belle II experiment, Belle II, an experiment measuring the CP violation of B mesons. * SLAC National Accelerator Laboratory (Menlo Park, California, Menlo Park, United States). Its 2-mile-long linear particle accelerator began operating in 1962 and was the basis for numerous electron and positron collision experiments until 2008. Since then the linear accelerator is being used for the Linac Coherent Light Source X-ray laser as well as advanced accelerator design research. SLAC staff continue to participate in developing and building many particle detectors around the world.


Theory

Theoretical particle physics attempts to develop the models, theoretical framework, and mathematical tools to understand current experiments and make predictions for future experiments (see also theoretical physics). There are several major interrelated efforts being made in theoretical particle physics today. One important branch attempts to better understand the Standard Model and its tests. Theorists make quantitative predictions of observables at collider and Astroparticle physics, astronomical experiments, which along with experimental measurements is used to extract the parameters of the Standard Model with less uncertainty. This work probes the limits of the Standard Model and therefore expands scientific understanding of nature's building blocks. Those efforts are made challenging by the difficulty of calculating high precision quantities in quantum chromodynamics. Some theorists working in this area use the tools of perturbative quantum field theory and effective field theory, referring to themselves as Particle physics phenomenology, phenomenologists. Others make use of lattice field theory and call themselves ''lattice theorists''. Another major effort is in model building where model builders develop ideas for what physics may lie beyond the Standard Model (at higher energies or smaller distances). This work is often motivated by the hierarchy problem and is constrained by existing experimental data. It may involve work on supersymmetry, alternatives to the Higgs mechanism, extra spatial dimensions (such as the Randall–Sundrum models), Preon theory, combinations of these, or other ideas. A third major effort in theoretical particle physics is string theory. ''String theorists'' attempt to construct a unified description of quantum mechanics and general relativity by building a theory based on small strings, and branes rather than particles. If the theory is successful, it may be considered a "Theory of Everything", or "TOE". There are also other areas of work in theoretical particle physics ranging from Particle physics in cosmology, particle cosmology to loop quantum gravity.


Practical applications

In principle, all physics (and practical applications developed therefrom) can be derived from the study of fundamental particles. In practice, even if "particle physics" is taken to mean only "high-energy atom smashers", many technologies have been developed during these pioneering investigations that later find wide uses in society. Particle accelerators are used to produce Isotopes in medicine, medical isotopes for research and treatment (for example, isotopes used in PET imaging), or used directly in external beam radiotherapy. The development of superconductors has been pushed forward by their use in particle physics. The World Wide Web and touchscreen technology were initially developed at CERN. Additional applications are found in medicine, national security, industry, computing, science, and workforce development, illustrating a long and growing list of beneficial practical applications with contributions from particle physics.


Future

The primary goal, which is pursued in several distinct ways, is to find and understand what physics may lie beyond the standard model. There are several powerful experimental reasons to expect new physics, including dark matter and neutrino mass. There are also theoretical hints that this new physics should be found at accessible energy scales. Much of the effort to find this new physics are focused on new collider experiments. The Large Hadron Collider (LHC) was completed in 2008 to help continue the search for the Higgs boson, supersymmetric particles, and other new physics. An intermediate goal is the construction of the International Linear Collider (ILC), which will complement the LHC by allowing more precise measurements of the properties of newly found particles. In August 2004, a decision for the technology of the ILC was taken but the site has still to be agreed upon. There are important non-collider experiments that attempt to find and understand physics beyond the Standard Model. One is the determination of the neutrino masses, since these masses may arise from neutrinos mixing with very heavy particles. Another is physical cosmology, cosmological observations that provide constraints on the dark matter, although it may be impossible to determine the exact nature of the dark matter without the colliders. Finally, lower bounds on the very long proton decay, lifetime of the proton put constraints on Grand Unified Theory, Grand Unified Theories at energy scales much higher than collider experiments will be able to probe any time soon. In May 2014, the Particle Physics Project Prioritization Panel released its report on particle physics funding priorities for the United States over the next decade. This report emphasized continued U.S. participation in the LHC and ILC, and expansion of the Deep Underground Neutrino Experiment, among other recommendations.


See also


References


External links

{{Portal bar, Physics Particle physics