HOME
The Info List - Paper


--- Advertisement ---



Paper
Paper
is a thin material produced by pressing together moist fibres of cellulose pulp derived from wood, rags or grasses, and drying them into flexible sheets. It is a versatile material with many uses, including writing, printing, packaging, cleaning, and a number of industrial and construction processes. The pulp papermaking process is said to have been developed in China during the early 2nd century CE, possibly as early as the year 105 CE,[1] by the Han court eunuch Cai Lun, although the earliest archaeological fragments of paper derive from the 2nd century BCE in China.[2] The modern pulp and paper industry is global, with China leading its production and the United States right behind it.

Contents

1 History 2 Early sources of fibre 3 Etymology 4 Papermaking

4.1 Chemical pulping 4.2 Mechanical pulping 4.3 De-inked pulp 4.4 Additives 4.5 Producing paper 4.6 Finishing

4.6.1 Paper
Paper
grain

5 Applications 6 Types, thickness and weight 7 Paper
Paper
stability 8 Environmental impact 9 Future 10 See also 11 Notes 12 References 13 Further reading 14 External links

History Main article: History of paper

Hemp
Hemp
wrapping paper, China, circa 100 BC.

The oldest known archaeological fragments of the immediate precursor to modern paper date to the 2nd century BCE in China. The pulp paper-making process is ascribed to Cai Lun, a 2nd-century CE Han court eunuch.[2] In the 13th century, the knowledge and uses of paper spread from China through the Middle East
Middle East
to medieval Europe, where the first water powered paper mills were built.[3] Because paper was introduced to the West through the city of Baghdad, it was first called bagdatikos.[4] In the 19th century, industrialization greatly reduced the cost of manufacturing paper. In 1844, the Canadian inventor Charles Fenerty and the German F. G. Keller independently developed processes for pulping wood fibres.[5] Early sources of fibre

Ancient Sanskrit
Sanskrit
on Hemp
Hemp
based Paper. Hemp
Hemp
Fibre
Fibre
was commonly used in the production of paper from 200 BCE to the Late 1800's.

See also: wood pulp and deinking Before the industrialisation of the paper production the most common fibre source was recycled fibres from used textiles, called rags. The rags were from hemp, linen and cotton.[6] A process for removing printing inks from recycled paper was invented by German jurist Justus Claproth in 1774.[6] Today this method is called deinking. It was not until the introduction of wood pulp in 1843 that paper production was not dependent on recycled materials from ragpickers.[6] Etymology Further information: Papyrus The word "paper" is etymologically derived from Latin
Latin
papyrus, which comes from the Greek πάπυρος (papuros), the word for the Cyperus papyrus
Cyperus papyrus
plant.[7][8] Papyrus
Papyrus
is a thick, paper-like material produced from the pith of the Cyperus papyrus
Cyperus papyrus
plant, which was used in ancient Egypt and other Mediterranean cultures for writing before the introduction of paper into the Middle East
Middle East
and Europe.[9] Although the word paper is etymologically derived from papyrus, the two are produced very differently and the development of the first is distinct from the development of the second. Papyrus
Papyrus
is a lamination of natural plant fibres, while paper is manufactured from fibres whose properties have been changed by maceration.[2] Papermaking Main article: Papermaking Chemical pulping Main articles: kraft process, sulfite process, and soda pulping To make pulp from wood, a chemical pulping process separates lignin from cellulose fibres. This is accomplished by dissolving lignin in a cooking liquor, so that it may be washed from the cellulose; this preserves the length of the cellulose fibres. Paper
Paper
made from chemical pulps are also known as wood-free papers–not to be confused with tree-free paper; this is because they do not contain lignin, which deteriorates over time. The pulp can also be bleached to produce white paper, but this consumes 5% of the fibres; chemical pulping processes are not used to make paper made from cotton, which is already 90% cellulose.

The microscopic structure of paper: Micrograph
Micrograph
of paper autofluorescing under ultraviolet illumination. The individual fibres in this sample are around 10 µm in diameter.

There are three main chemical pulping processes: the sulfite process dates back to the 1840s and it was the dominant method extent before the second world war. The kraft process, invented in the 1870s and first used in the 1890s, is now the most commonly practiced strategy, one of its advantages is the chemical reaction with lignin, that produces heat, which can be used to run a generator. Most pulping operations using the kraft process are net contributors to the electricity grid or use the electricity to run an adjacent paper mill. Another advantage is that this process recovers and reuses all inorganic chemical reagents. Soda pulping is another specialty process used to pulp straws, bagasse and hardwoods with high silicate content. Mechanical pulping There are two major mechanical pulps: thermomechanical pulp (TMP) and groundwood pulp (GW). In the TMP process, wood is chipped and then fed into steam heated refiners, where the chips are squeezed and converted to fibres between two steel discs. In the groundwood process, debarked logs are fed into grinders where they are pressed against rotating stones to be made into fibres. Mechanical pulping does not remove the lignin, so the yield is very high, >95%, however it causes the paper thus produced to turn yellow and become brittle over time. Mechanical pulps have rather short fibres, thus producing weak paper. Although large amounts of electrical energy are required to produce mechanical pulp, it costs less than the chemical kind. De-inked pulp Paper recycling
Paper recycling
processes can use either chemically or mechanically produced pulp; by mixing it with water and applying mechanical action the hydrogen bonds in the paper can be broken and fibres separated again. Most recycled paper contains a proportion of virgin fibre for the sake of quality; generally speaking, de-inked pulp is of the same quality or lower than the collected paper it was made from. There are three main classifications of recycled fibre:.

Mill broke or internal mill waste – This incorporates any substandard or grade-change paper made within the paper mill itself, which then goes back into the manufacturing system to be re-pulped back into paper. Such out-of-specification paper is not sold and is therefore often not classified as genuine reclaimed recycled fibre, however most paper mills have been reusing their own waste fibre for many years, long before recycling became popular. Preconsumer waste – This is offcut and processing waste, such as guillotine trims and envelope blank waste; it is generated outside the paper mill and could potentially go to landfill, and is a genuine recycled fibre source; it includes de-inked preconsumer (recycled material that has been printed but did not reach its intended end use, such as waste from printers and unsold publications).[10] Postconsumer waste – This is fibre from paper that has been used for its intended end use and includes office waste, magazine papers and newsprint. As the vast majority of this material has been printed – either digitally or by more conventional means such as lithography or rotogravure – it will either be recycled as printed paper or go through a de-inking process first.

Recycled papers can be made from 100% recycled materials or blended with virgin pulp, although they are (generally) not as strong nor as bright as papers made from the latter. Additives Besides the fibres, pulps may contain fillers such as chalk or china clay,[11] which improve its characteristics for printing or writing.[12] Additives for sizing purposes may be mixed with it or applied to the paper web later in the manufacturing process; the purpose of such sizing is to establish the correct level of surface absorbency to suit ink or paint. Producing paper Main articles: Paper machine
Paper machine
and papermaking The pulp is fed to a paper machine where it is formed as a paper web and the water is removed from it by pressing and drying. Pressing the sheet removes the water by force; once the water is forced from the sheet, a special kind of felt, which is not to be confused with the traditional one, is used to collect the water; whereas when making paper by hand, a blotter sheet is used instead. Drying involves using air or heat to remove water from the paper sheets. In the earliest days of paper making, this was done by hanging the sheets like laundry; in more modern times, various forms of heated drying mechanisms are used. On the paper machine, the most common is the steam-heated can dryer. These can reach temperatures above 200 °F (93 °C) and are used in long sequences of more than forty cans where the heat produced by these can easily dry the paper to less than six percent moisture. Finishing The paper may then undergo sizing to alter its physical properties for use in various applications. Paper
Paper
at this point is uncoated. Coated paper has a thin layer of material such as calcium carbonate or china clay applied to one or both sides in order to create a surface more suitable for high-resolution halftone screens. (Uncoated papers are rarely suitable for screens above 150 lpi.) Coated or uncoated papers may have their surfaces polished by calendering. Coated papers are divided into matte, semi-matte or silk, and gloss. Gloss papers give the highest optical density in the printed image. The paper is then fed onto reels if it is to be used on web printing presses, or cut into sheets for other printing processes or other purposes. The fibres in the paper basically run in the machine direction. Sheets are usually cut "long-grain", i.e. with the grain parallel to the longer dimension of the sheet. Continuous form paper (or continuous stationery) is cut to width with holes punched at the edges, and folded into stacks. Paper
Paper
grain All paper produced by paper machines as the Fourdrinier Machine
Fourdrinier Machine
are wove paper, i.e. the wire mesh that transports the web leaves a pattern that has the same density along the paper grain and across the grain. Textured finishes, watermarks and wire patterns imitating hand-made laid paper can be created by the use of appropriate rollers in the later stages of the machine. Wove paper
Wove paper
does not exhibit "laidlines", which are small regular lines left behind on paper when it was handmade in a mould made from rows of metal wires or bamboo. Laidlines are very close together. They run perpendicular to the "chainlines", which are further apart. Handmade paper similarly exhibits "deckle edges", or rough and feathery borders.[13] Applications Paper
Paper
can be produced with a wide variety of properties, depending on its intended use.

For representing value: paper money, bank note, cheque, security (see security paper), voucher and ticket For storing information: book, notebook, graph paper, magazine, newspaper, art, zine, letter For personal use: diary, note to remind oneself, etc.; for temporary personal use: scratch paper For communication: between individuals and/or groups of people. For packaging: corrugated box, paper bag, envelope, Packing & Wrapping Paper, Paper
Paper
string, Charta emporetica and wallpaper For cleaning: toilet paper, handkerchiefs, paper towels, facial tissue and cat litter For construction: papier-mâché, origami, paper planes, quilling, paper honeycomb, used as a core material in composite materials, paper engineering, construction paper and paper clothing For other uses: emery paper, sandpaper, blotting paper, litmus paper, universal indicator paper, paper chromatography, electrical insulation paper (see also dielectric and permittivity) and filter paper

It is estimated that paper-based storage solutions captured 0.33% of the total in 1986 and only 0.007% in 2007, even though in absolute terms, the world's capacity to store information on paper increased from 8.7 to 19.4 petabytes.[14] It is estimated that in 1986 paper-based postal letters represented less than 0.05% of the world's telecommunication capacity, with sharply decreasing tendency after the massive introduction of digital technologies.[14] Types, thickness and weight Main articles: Paper
Paper
size, Grammage, and Paper
Paper
density

Card and paper stock for crafts use comes in a wide variety of textures and colors.

The thickness of paper is often measured by caliper, which is typically given in thousandths of an inch in the United States and in micrometers (µm) in the rest of the world.[15] Paper
Paper
may be between 0.07 and 0.18 millimetres (0.0028 and 0.0071 in) thick.[16] Paper
Paper
is often characterized by weight. In the United States, the weight assigned to a paper is the weight of a ream, 500 sheets, of varying "basic sizes", before the paper is cut into the size it is sold to end customers. For example, a ream of 20 lb, 8.5 in × 11 in (216 mm × 279 mm) paper weighs 5 pounds, because it has been cut from a larger sheet into four pieces.[17] In the United States, printing paper is generally 20 lb, 24 lb, or 32 lb at most. Cover stock
Cover stock
is generally 68 lb, and 110 lb or more is considered card stock. In Europe, and other regions using the ISO 216
ISO 216
paper sizing system, the weight is expressed in grammes per square metre (g/m2 or usually just g) of the paper. Printing
Printing
paper is generally between 60 g and 120 g. Anything heavier than 160 g is considered card. The weight of a ream therefore depends on the dimensions of the paper and its thickness. Most commercial paper sold in North America is cut to standard paper sizes based on customary units and is defined by the length and width of a sheet of paper. The ISO 216
ISO 216
system used in most other countries is based on the surface area of a sheet of paper, not on a sheet's width and length. It was first adopted in Germany in 1922 and generally spread as nations adopted the metric system. The largest standard size paper is A0 (A zero), measuring one square meter (approx. 1189 × 841 mm). A1 is half the size of a sheet of A0 (i.e., 594 mm × 841 mm), such that two sheets of A1 placed side by side are equal to one sheet of A0. A2 is half the size of a sheet of A1, and so forth. Common sizes used in the office and the home are A4 and A3 (A3 is the size of two A4 sheets). The density of paper ranges from 250 kg/m3 (16 lb/cu ft) for tissue paper to 1,500 kg/m3 (94 lb/cu ft) for some speciality paper. Printing
Printing
paper is about 800 kg/m3 (50 lb/cu ft).[18] Paper
Paper
may be classified into seven categories:[19]

Printing
Printing
papers of wide variety. Wrapping papers for the protection of goods and merchandise. This includes wax and kraft papers. Writing
Writing
paper suitable for stationery requirements. This includes ledger, bank, and bond paper. Blotting papers containing little or no size. Drawing papers usually with rough surfaces used by artists and designers, including cartridge paper. Handmade papers including most decorative papers, Ingres papers, Japanese paper
Japanese paper
and tissues, all characterized by lack of grain direction. Specialty papers including cigarette paper, toilet tissue, and other industrial papers.

Some paper types include:

Bank paper Banana paper Bond paper Book
Book
paper Coated paper: glossy and matte surface Construction paper/sugar paper Cotton
Cotton
paper Fish paper (vulcanized fibres for electrical insulation) Inkjet paper Kraft paper Laid paper Leather paper Mummy paper Oak tag paper Sandpaper Tyvek
Tyvek
paper Wallpaper Washi Waterproof paper Wax paper Wove paper Xuan paper

Paper
Paper
stability Much of the early paper made from wood pulp contained significant amounts of alum, a variety of aluminium sulfate salts that is significantly acidic. Alum
Alum
was added to paper to assist in sizing,[20] making it somewhat water resistant so that inks did not "run" or spread uncontrollably. Early papermakers did not realize that the alum they added liberally to cure almost every problem encountered in making their product would eventually be detrimental.[21] The cellulose fibres that make up paper are hydrolyzed by acid, and the presence of alum would eventually degrade the fibres until the paper disintegrated in a process that has come to be known as "slow fire". Documents written on rag paper were significantly more stable. The use of non-acidic additives to make paper is becoming more prevalent, and the stability of these papers is less of an issue. Paper
Paper
made from mechanical pulp contains significant amounts of lignin, a major component in wood. In the presence of light and oxygen, lignin reacts to give yellow materials,[22] which is why newsprint and other mechanical paper yellows with age. Paper
Paper
made from bleached kraft or sulfite pulps does not contain significant amounts of lignin and is therefore better suited for books, documents and other applications where whiteness of the paper is essential. Paper
Paper
made from wood pulp is not necessarily less durable than a rag paper. The aging behavior of a paper is determined by its manufacture, not the original source of the fibers.[23] Furthermore, tests sponsored by the Library of Congress
Library of Congress
prove that all paper is at risk of acid decay, because cellulose itself produces formic, acetic, lactic and oxalic acids.[24] Mechanical pulping yields almost a tonne of pulp per tonne of dry wood used, which is why mechanical pulps are sometimes referred to as "high yield" pulps. With almost twice the yield as chemical pulping, mechanical pulps is often cheaper. Mass-market paperback books and newspapers tend to use mechanical papers. Book
Book
publishers tend to use acid-free paper, made from fully bleached chemical pulps for hardback and trade paperback books. Environmental impact Main articles: Environmental impact of paper
Environmental impact of paper
and Deforestation The production and use of paper has a number of adverse effects on the environment. Worldwide consumption of paper has risen by 400% in the past 40 years[clarification needed] leading to increase in deforestation, with 35% of harvested trees being used for paper manufacture. Most paper companies also plant trees to help regrow forests. Logging of old growth forests accounts for less than 10% of wood pulp,[25] but is one of the most controversial issues. Paper
Paper
waste accounts for up to 40% of total waste produced in the United States each year, which adds up to 71.6 million tons of paper waste per year in the United States alone.[26] The average office worker in the US prints 31 pages every day.[27] Americans also use in the order of 16 billion paper cups per year. Conventional bleaching of wood pulp using elemental chlorine produces and releases into the environment large amounts of chlorinated organic compounds, including chlorinated dioxins.[28] Dioxins are recognized as a persistent environmental pollutant, regulated internationally by the Stockholm Convention on Persistent Organic Pollutants. Dioxins are highly toxic, and health effects on humans include reproductive, developmental, immune and hormonal problems. They are known to be carcinogenic. Over 90% of human exposure is through food, primarily meat, dairy, fish and shellfish, as dioxins accumulate in the food chain in the fatty tissue of animals.[29] Future Some manufacturers have started using a new, significantly more environmentally friendly alternative to expanded plastic packaging. Made out of paper, and known commercially as PaperFoam, the new packaging has mechanical properties very similar to those of some expanded plastic packaging, but is biodegradable and can also be recycled with ordinary paper.[30] With increasing environmental concerns about synthetic coatings (such as PFOA) and the higher prices of hydrocarbon based petrochemicals, there is a focus on zein (corn protein) as a coating for paper in high grease applications such as popcorn bags.[31] Also, synthetics such as Tyvek
Tyvek
and Teslin have been introduced as printing media as a more durable material than paper. See also

Arches paper Buckypaper Continuous form paper (or "continuous stationery") Deinked pulp Environmental impact of paper Fibre
Fibre
crop Graphene oxide paper Lokta paper Mass deacidification Origami Paper
Paper
and ink testing Paper
Paper
armour Paper
Paper
chemicals Paper
Paper
craft Paper
Paper
engineering Paper
Paper
recycling Paper
Paper
size, sizing Paper
Paper
towels Papier "paper" in French or German Papier-mâché Papyrus Parchment
Parchment
paper, a form of paper made to emulate the texture of animal-based parchment Roll hardness tester Security
Security
paper Seed paper Toilet paper Wood
Wood
pulp

Notes

^ Hogben, Lancelot. "Printing, Paper
Paper
and Playing Cards". Bennett, Paul A. (ed.) Books and Printing: A Treasury for Typophiles. New York: The World Publishing Company, 1951. pp. 15–31. p. 17. & Mann, George. Print: A Manual for Librarians and Students Describing in Detail the History, Methods, and Applications of Printing
Printing
and Paper Making. London: Grafton & Co., 1952. p. 77 ^ a b c Tsien 1985, p. 38 ^ Burns 1996, pp. 417f. ^ Murray, Stuart A. P. The Library: An illustrated History. Skyhorse Publishing, 2009, p. 57. ^ Burger, Peter (2007). Charles Fenerty
Charles Fenerty
and his paper invention. Toronto: Peter Burger. pp. 25–30. ISBN 9780978331818. OCLC 173248586.  ^ a b c Göttsching, Lothar; Gullichsen, Johan; Pakarinen, Heikki; Paulapuro, Hannu; Yhdistys, Suomen Paperi-Insinöörien; Technical Association of the Pulp and Paper
Paper
Industry (2000). Recycling
Recycling
fiber and deinking. Finland: Fapet Oy. pp. 12–14. ISBN 9525216071. OCLC 247670296.  ^ πάπυρος, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus ^ papyrus, on Oxford Dictionaries ^ "papyrus". Dictionary.com Unabridged. Random House. Retrieved 20 November 2008.  ^ Natural Resource Defense Council ^ Appropriate Technology. Intermediate Technology Publications. 1996.  ^ Thorn, Ian; Au, Che On (2009-07-24). Applications of Wet-End Paper Chemistry. Springer Science & Business Media. ISBN 9781402060380.  ^ "Document Doubles" in a virtual museum exhibition at Library and Archives Canada ^ a b "The World’s Technological Capacity to Store, Communicate, and Compute Information", especially Supporting online material, Martin Hilbert and Priscila López (2011), Science, 332(6025), 60–65; free access to the article through here: martinhilbert.net/WorldInfoCapacity.html ^ " Paper
Paper
Thickness Chart". Case Paper. Retrieved 2017-05-27.  ^ Elert, Glenn. "Thickness of a Piece of Paper". The Physics Factbook. Retrieved 2017-05-27.  ^ McKenzie, Bruce G. (1989). The Hammerhill guide to desktop publishing in business. Hammerhill. p. 144. ISBN 9780961565114. OCLC 851074844.  ^ " Density
Density
of paper and paperboard". PaperOnWeb. Retrieved 31 October 2007.  ^ Johnson, Arthur (1978). The Thames and Hudson manual of bookbinding. London: Thames and Hudson. OCLC 959020143.  ^ Biermann, Christopher J/ (1993). Essentials of pulping and papermaking. San Diego: Academic Press. ISBN 012097360X. OCLC 813399142.  ^ Clark, James d'A. (1985). Pulp Technology and Treatment for Paper (2nd ed.). San Francisco: Miller Freeman Publications. ISBN 0-87930-164-3.  ^ Fabbri, Claudia; Bietti, Massimo; Lanzalunga, Osvaldo. "Generation and Reactivity of Ketyl Radicals with Lignin
Lignin
Related Structures. On the Importance of the Ketyl Pathway in the Photoyellowing of Lignin Containing Pulps and Papers". J. Org. Chem. 2005 (70): 2720–2728. doi:10.1021/jo047826u.  ^ Erhardt, D.; Tumosa, C. (2005). "Chemical Degradation of Cellulose in Paper
Paper
over 500 years". Restaurator: International Journal for the Preservation of Library and Archival Material. 26: 155. doi:10.1515/rest.2005.26.3.151.  ^ "The Deterioration and Preservation of Paper: Some Essential Facts". Library of Congress. Retrieved 7 January 2015. Research by the Library of Congress has demonstrated that cellulose itself generates acids as it ages, including formic, acetic, lactic, and oxalic acids  ^ Martin, Sam (2004). " Paper
Paper
Chase". Ecology Communications, Inc. Archived from the original on 19 June 2007. Retrieved 21 September 2007.  ^ EPA (28 June 2006). "General Overview of What's in America's Trash". United States Environmental Protection Agency. Archived from the original on 5 January 2012. Retrieved 4 April 2012.  ^ Groll, T. 2015 In vielen Büros wird unnötig viel ausgedruckt, Zeit Online, 20 June 2015. ^ "Effluents from Pulp Mills using Bleaching – PSL1". ISBN 0-662-18734-2 DSS. Health Canada. 1991. Retrieved 21 September 2007.  ^ "Dioxins and their effects on human health". World Health Organization. June 2014. Retrieved 7 January 2015. More than 90% of human exposure is through food  ^ PaperFoam Carbon Friendly Packaging ^ Barrier compositions and articles produced with the compositions cross-reference to related application

References

Burns, Robert I. (1996). " Paper
Paper
comes to the West, 800–1400". In Lindgren, Uta. Europäische Technik im Mittelalter. 800 bis 1400. Tradition und Innovation (4th ed.). Berlin: Gebr. Mann Verlag. pp. 413–422. ISBN 3-7861-1748-9.  Tsien, Tsuen-Hsuin (1985). Needham, Joseph, ed. Paper
Paper
and Printing. Science and Civilisation in China, Chemistry and Chemical Technology. V (part 1). Cambridge University Press.  "Document Doubles" in Detecting the Truth: Fakes, Forgeries and Trickery, a virtual museum exhibition at Library and Archives Canada

Further reading

Alexander Monro, The Paper
Paper
Trail: An Unexpected History of the World's Greatest Invention, Allen Lane, 2014

External links

Look up paper in Wiktionary, the free dictionary.

Wikimedia Commons has media related to Paper.

Technical Association of the Pulp and Paper
Paper
Industry (TAPPI) official website Paper
Paper
at Encyclopædia Britannica How is paper made? at The Straight Dope, 22 November 2005 ' Paper
Paper
thickness cross reference guide Thirteen-minute video on modern paper production system, from Sappi

v t e

Paper data storage media

Antiquity

Writing
Writing
on papyrus (c. 3000 BCE) Paper
Paper
(105 CE)

Modern

Railroad/Transit Punch Photograph (1880s) Punched card
Punched card
(1890) Edge-notched card
Edge-notched card
(1896) Optical mark recognition Optical character recognition (1929) Barcode
Barcode
(1948)

v t e

Paper

History Manufacture/Papermaking

Types

Bible Blotting Bond Cardboard Cartridge Coated paper Construction Cotton
Cotton
(rag) Crêpe Display Dó Asphalt Glassine India Korean Kraft Laid Manila Newsprint Oatmeal Onionskin Origami Baking Building Rice Rolling Scritta Paperboard Security Seed Copy Stone Tar Thermal Tissue Tracing Transfer Tree-free Wallpaper Washi Waterproof Wax Wood-free Wove Writing Xuan

Materials

China
China
clay Fiber crop Paper
Paper
chemicals Papyrus Wood
Wood
pulp

Specifications

Grammage Density Paper
Paper
sizes Units of paper quantity Surface chemistry of paper Wet strength

Manufacture and process

Bleaching of wood pulp Calender Conical refiner Deinking Paper
Paper
pollution Environmental impact of paper Handmade paper Hollander beater Kraft process Organosolv Paper
Paper
machine Paper
Paper
recycling Papermaking Soda pulping Sulfite process

Industry

Paper
Paper
industry In Europe In Canada In India In Japan In the United States Paper
Paper
mill List of paper mills

  Category:Paper   Commons

v t e

Decorative arts
Decorative arts
and handicrafts

Textile

Banner-making Canvas work Cross-stitch Crocheting Embroidery Felting Friendship bracelet Knitting Lace-making Lucet Macrame Millinery Needlepoint Needlework Patchwork Quilting Ribbon embroidery Rug hooking Rug making Sewing Shoemaking Spinning (textiles) String art Tapestry Tatting Tie-dye Weaving

Paper

Altered book Bookbinding Calligraphy Cardmaking Cast paper Collage

Decoupage Photomontage

Iris folding Jianzhi Origami

Kirigami Moneygami

Embossing Marbling Papercraft Papercutting Papermaking Paper
Paper
toys Papier-mâché Pop-up book Quilling Scrapbooking Stamping Wallpaper

Wood

Bentwood Cabinetry Carpentry Chip carving Ébéniste Fretwork Intarsia Marquetry Wood
Wood
burning Wood
Wood
carving Woodturning

Ceramic

Azulejo Bone china Earthenware Porcelain Pottery Stoneware Terracotta

Glass

Cameo glass Glassware Stained glass

Metal

Engraving Jewellery Goldsmith Silversmith

Other

Assemblage Balloon modelling Beadwork Bone carving Doll
Doll
making Dollhouse Egg decorating Engraved gems Hardstone carving Lathart Lapidary Leatherworking Miniatures Micromosaic Mosaic

Glass
Glass
mosaic

Pietra dura Pressed flower craft Scrimshaw Straw
Straw
marquetry Wall decal

v t e

Labeling

Label
Label
Construction

Adhesive Die cutting (web) Hologram In-mould labelling Label Paper Perforation Pressure sensitive adhesive Plastic Printing Security
Security
hologram Release liner Security
Security
printing Security
Security
label Smart label Sticker

Content

Advertising Barcode Country of origin Cigarette warning label Ecolabel EU energy label Fair Packaging and Labeling Act List of food labeling regulations Mandatory labelling Nameplate Nutrition facts label Radio frequency identification United Kingdom food labeling regulations UPC Warning label Wine label

Use

Advertising Authentication Automatic identification and data capture Label
Label
dispenser Label
Label
printer Packaging and labeling Track & Trace

v t e

Packaging

General topics

Active packaging Child-resistant packaging Contract packager Disposable food packaging Food packaging Luxury packaging Modified atmosphere/modified humidity packaging Package pilferage Package testing Packaging engineering Pharmaceutical packaging Reusable packaging Shelf life Sustainable packaging Tamper-evident Tamper resistance Wrap rage

Containers

Aerosol Container Aluminium bottle Aluminum can Ampoule Antistatic bag Bag-in-box Bags and flexible containers Barrel Beer bottle Biodegradable bag Blister pack Boil-in-Bag Bottle Box Bulk box Cage Case Carboy Carton Chub Clamshell Corrugated box
Corrugated box
design Crate Disposable cup Drum Envelope Flexible intermediate bulk container Foam food container Folding carton Glass
Glass
bottle Growler Insulated shipping container Intermediate bulk container Jar Jerrycan Jug Juicebox Keg Multi-pack Oyster pail Packet (container) Padded mailer Pail Paper
Paper
bag Paper
Paper
sack Plastic
Plastic
bag Plastic
Plastic
bottle Popcorn bag Retort pouch Sachet Security
Security
bag Self-heating can Self-heating food packaging Shipping container Skin pack Spray bottle Tetra Brik Tin can Tub (container) Tube Unit load Vial Wooden box

Materials and components

Adhesive Aluminium foil Bail handle Bioplastic Biodegradable plastic BoPET Bubble wrap Bung Cellophane Closure Coated paper Coating Coextrusion Corrugated fiberboard Corrugated plastic Cushioning Desiccant Double seam Foam peanut Glass Hot-melt adhesive Kraft paper Label Lid Linear low-density polyethylene Liquid packaging board Low-density polyethylene Metallised film Modified atmosphere Molded pulp Nonwoven fabric Overwrap Oxygen scavenger Package handle Packaging gas Pallet Paper Paper
Paper
pallet Paperboard Plastic
Plastic
film Plastic
Plastic
pallet Plastic
Plastic
wrap Polyester Polyethylene Polypropylene Pressure-sensitive tape Screw cap Screw cap
Screw cap
(wine) Security
Security
printing Security
Security
tape Shock detector Shock and vibration data logger Shrink wrap Slip sheet Staple (fastener) Strapping Stretch wrap Susceptor Tamper-evident
Tamper-evident
band Tear tape Temperature data logger Time temperature indicator Tinplate Velostat

Processes

Aseptic processing Authentication Automatic identification and data capture Blow fill seal Blow molding Calendering Canning Coating Containerization Curtain Coating Die cutting Die forming (plastics) Electronic article surveillance Extrusion Extrusion
Extrusion
coating Glass
Glass
production Graphic design HACCP Hermetic seal Induction sealing Injection molding Laminating Laser cutting Molding Papermaking Plastic
Plastic
welding Plastics extrusion Printing Quality assurance Radio-frequency identification Roll slitting Shearing (manufacturing) Thermoforming Track and trace Vacuum forming Ultrasonic welding Vacuum packaging Verification and validation

Machinery

Barcode
Barcode
printer Barcode
Barcode
reader Bottling line Calender Can seamer Cartoning machine Case sealer Check weigher Conveyor system Extended core stretch wrapper Filler Heat gun Heat sealer Industrial robot Injection molding
Injection molding
machine Label
Label
printer applicator Lineshaft roller conveyor Logistics automation Material handling equipment Mechanical brake stretch wrapper Multihead weigher Orbital stretch wrapper Palletizer Rotary wheel blow molding systems Shrink tunnel Staple gun Tape dispenser Turntable stretch wrapper Vertical form fill sealing machine

Environment, post-use

Biodegradation Environmental engineering Glass
Glass
recycling Industrial ecology Life-cycle assessment Litter Paper
Paper
recycling Plastic
Plastic
recycling Recycling Reusable packaging Reverse logistics Source reduction Sustainable packaging Waste management

v t e

Wood
Wood
products

Lumber/ timber

Batten Beam Bressummer Cruck Flitch beam Flooring Joist Lath Molding Panelling Plank Plate Post Purlin Rafter Railroad ties Reclaimed Shingle Siding Sill Stud Timber truss Treenail Truss Utility pole

Engineered wood

Glued laminated timber

veneer LVL parallel strand

I-joist Fiberboard

hardboard Masonite MDF

Oriented strand board Oriented structural straw board Particle board Plywood Structural insulated panel Wood-plastic composite

lumber

Fuelwood

Charcoal

biochar

Firelog Firewood Pellet fuel Wood
Wood
fuel

Fibers

Cardboard Corrugated fiberboard Paper Paperboard Pulp Pulpwood Rayon

Derivatives

Birch-tar Cellulose

nano

Hemicellulose Cellulosic ethanol Dyes Lignin Liquid smoke Lye Methanol Pyroligneous acid Pine tar Pitch Sandalwood oil Tannin Wood
Wood
gas

By-products

Barkdust Black liquor Ramial chipped wood Sawdust Tall oil Wood
Wood
flour Wood
Wood
wool Woodchips

Historical

Axe ties Clapboard Dugout canoe Potash Sawdust
Sawdust
brandy Split-rail fence Tanbark Timber framing Wooden masts

See also

Biomass Certified wood Destructive distillation Dry distillation Engineered bamboo Forestry List of woods Mulch Non-timber forest products Papermaking Wood
Wood
drying Wood
Wood
preservation Wood
Wood
processing Woodworking

Forestry
Forestry
portal Trees portal Category Commons WikiProject Forestry

v t e

Writing

Semi-permanent Writing
Writing
material

Plant based

Palm-leaf manuscript
Palm-leaf manuscript
( Borassus
Borassus
spp.) Ola leaf
Ola leaf
(manuscript) (C. umbraculifera) Birch bark manuscript Papyrus Paper Wax tablet
Wax tablet
(wood) Amate

Trema micrantha Ficus aurea

Parabaik
Parabaik
(S. asper) Bamboo and wooden slips

Other

Clay tablet Metals

Stamping (metalworking) Intaglio (printmaking)

Stone inscription animal skin Samut khoi
Samut khoi
kraing (paper usu. Mulberry
Mulberry
bark, metals, other) Oracle bone silk E-ink Textile
Textile
printing Geoglyph Ink Photographic film

Inherently impermanent material

Electronic visual display Skywriting Sand writing Blood writing

Types

manuscript inscription book sign electronic storage codex bas-relief high-relief

Misc

Writing
Writing
systems

Authority control

GND: 4044522-7 HDS: 1

.