PCR optimization
   HOME

TheInfoList



OR:

The
polymerase chain reaction The polymerase chain reaction (PCR) is a method widely used to rapidly make millions to billions of copies (complete or partial) of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it (or a part of it) ...
(PCR) is a commonly used molecular biology tool for amplifying DNA, and various techniques for PCR optimization which have been developed by molecular biologists to improve PCR performance and minimize failure.


Contamination and PCR

The PCR method is extremely sensitive, requiring only a few DNA molecules in a single reaction for amplification across several orders of magnitude. Therefore, adequate measures to avoid contamination from any DNA present in the lab environment (
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
,
virus A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsk ...
es, or human sources) are required. Because products from previous PCR amplifications are a common source of contamination, many molecular biology labs have implemented procedures that involve dividing the lab into separate areas. One lab area is dedicated to preparation and handling of pre-PCR reagents and the setup of the PCR reaction, and another area to post-PCR processing, such as gel electrophoresis or PCR product purification. For the setup of PCR reactions, many standard operating procedures involve using pipettes with filter tips and wearing fresh laboratory gloves, and in some cases a
laminar flow cabinet A laminar flow cabinet or tissue culture hood is a carefully enclosed bench designed to prevent contamination of semiconductor wafers, biological samples, or any particle sensitive materials. Air is drawn through a HEPA filter and blown in a very ...
with UV lamp as a work station (to destroy any extraneomultimer formation). PCR is routinely assessed against a
negative control A scientific control is an experiment or observation designed to minimize the effects of variables other than the independent variable (i.e. confounding variables). This increases the reliability of the results, often through a comparison be ...
reaction that is set up identically to the experimental PCR, but without template DNA, and performed alongside the experimental PCR.


Hairpins

Secondary structures in the DNA can result in folding or knotting of DNA template or primers, leading to decreased product yield or failure of the reaction.
Hairpin A hairpin or hair pin is a long device used to hold a person's hair in place. It may be used simply to secure long hair out of the way for convenience or as part of an elaborate hairstyle or coiffure. The earliest evidence for dressing the hai ...
s, which consist of internal folds caused by base-pairing between nucleotides in inverted repeats within single-stranded DNA, are common secondary structures and may result in failed PCRs. Typically, primer design that includes a check for potential secondary structures in the primers, or addition of
DMSO Dimethyl sulfoxide (DMSO) is an organosulfur compound with the formula ( CH3)2. This colorless liquid is the sulfoxide most widely used commercially. It is an important polar aprotic solvent that dissolves both polar and nonpolar compounds ...
or
glycerol Glycerol (), also called glycerine in British English and glycerin in American English, is a simple triol compound. It is a colorless, odorless, viscous liquid that is sweet-tasting and non-toxic. The glycerol backbone is found in lipids known ...
to the PCR to minimize secondary structures in the DNA template, are used in the optimization of PCRs that have a history of failure due to suspected DNA hairpins.


Polymerase errors

Taq polymerase ''Taq'' polymerase is a thermostable DNA polymerase I named after the thermophilic eubacterial microorganism '' Thermus aquaticus,'' from which it was originally isolated by Chien et al. in 1976. Its name is often abbreviated to ''Taq'' or '' ...
lacks a 3′ to 5′ exonuclease activity. Thus, Taq has no error- proof-reading activity, which consists of excision of any newly misincorporated nucleotide base from the nascent (i.e., extending) DNA strand that does not match with its opposite base in the complementary DNA strand. The lack in 3′ to 5′ proofreading of the Taq enzyme results in a high error rate (mutations per nucleotide per cycle) of approximately 1 in bases, which affects the fidelity of the PCR, especially if errors occur early in the PCR with low amounts of starting material, causing accumulation of a large proportion of amplified DNA with incorrect sequence in the final product. Several "high-fidelity" DNA polymerases, having engineered 3′ to 5′ exonuclease activity, have become available that permit more accurate amplification for use in PCRs for sequencing or cloning of products. Examples of polymerases with 3′ to 5′ exonuclease activity include: KOD DNA polymerase, a recombinant form of ''Thermococcus kodakaraensis'' KOD1; Vent, which is extracted from ''
Thermococcus litoralis ''Thermococcus litoralis'' (''T. litoralis'') is a species of Archaea that is found around deep-sea hydrothermal vents as well as shallow submarine thermal springs and oil wells. It is an anaerobic organotroph hyperthermophile that is between ...
'';
Pfu DNA polymerase ''Pfu'' DNA polymerase is an enzyme found in the hyperthermophilic archaeon ''Pyrococcus furiosus'', where it functions to copy the organism's DNA during cell division. In the laboratory setting, ''Pfu'' is used to amplify DNA in the polymeras ...
, which is extracted from ''
Pyrococcus furiosus ''Pyrococcus furiosus'' is a heterotrophic, strictly anaerobic, extremophilic, model species of archaea. It is classified as a hyperthermophile because it thrives best under extremely high temperatures, and is notable for having an optimum gr ...
''; Pwo, which is extracted from ''Pyrococcus woesii''; Q5 polymerase, with 280x higher fidelity amplification compared with ''Taq''.


Magnesium concentration

Magnesium is required as a co-factor for thermostable DNA polymerase. Taq polymerase is a magnesium-dependent enzyme and determining the optimum concentration to use is critical to the success of the PCR reaction. Some of the components of the reaction mixture such as template concentration, dNTPs and the presence of
chelating agents Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate (multiple bonded) ligand and a single central metal atom. These ligands ar ...
(
EDTA Ethylenediaminetetraacetic acid (EDTA) is an aminopolycarboxylic acid with the formula H2N(CH2CO2H)2sub>2. This white, water-soluble solid is widely used to bind to iron (Fe2+/Fe3+) and calcium ions (Ca2+), forming water-soluble complexes ev ...
) or proteins can reduce the amount of free magnesium present thus reducing the activity of the enzyme. Primers which bind to incorrect template sites are stabilized in the presence of excessive magnesium concentrations and so results in decreased specificity of the reaction. Excessive magnesium concentrations also stabilize double stranded DNA and prevent complete denaturation of the DNA during PCR reducing the product yield. Inadequate thawing of MgCl2 may result in the formation of concentration gradients within the
magnesium chloride Magnesium chloride is the family of inorganic compounds with the formula , where x can range from 0 to 12. These salts are colorless or white solids that are highly soluble in water. These compounds and their solutions, both of which occur in natu ...
solution supplied with the DNA polymerase and also contributes to many failed experiments .


Size and other limitations

PCR works readily with a DNA template of up to two to three thousand base pairs in length. However, above this size, product yields often decrease, as with increasing length stochastic effects such as premature termination by the polymerase begin to affect the efficiency of the PCR. It is possible to amplify larger pieces of up to 50,000 base pairs with a slower heating cycle and special polymerases. These are polymerases fused to a processivity-enhancing DNA-binding protein, enhancing adherence of the polymerase to the DNA. Other valuable properties of the chimeric polymerase
TopoTaq
and PfuC2 include enhanced thermostability, specificity and resistance to contaminants and inhibitors. They were engineered using the unique helix-hairpin-helix (HhH) DNA binding domains of topoisomerase V from hyperthermophile ''
Methanopyrus In taxonomy, ''Methanopyrus'' is a genus of the Methanopyraceae. ''Methanopyrus'' is a genus of methanogen, with a single described species, ''M. kandleri''. It is a rod-shaped hyperthermophile, discovered on the wall of a black smoker from the ...
kandleri''. Chimeric polymerases overcome many limitations of native enzymes and are used in direct PCR amplification from cell cultures and even food samples, thus by-passing laborious DNA isolation steps. A robust strand-displacement activity of the hybrid TopoTaq polymerase helps solve PCR problems that can be caused by hairpins and G-loaded double helices. Helices with a high G-C content possess a higher melting temperature, often impairing PCR, depending on the conditions.


Non-specific priming

Non-specific binding of primers frequently occurs and may occur for several reasons. These include repeat sequences in the DNA template, non-specific binding between primer and template, high or low G-C content in the template, or incomplete primer binding, leaving the 5' end of the primer unattached to the template. Non-specific binding of degenerate primers is also common. Manipulation of annealing temperature and
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
ion concentration may be used to increase specificity. For example, lower concentrations of magnesium or other cations may prevent non-specific primer interactions, thus enabling successful PCR. A "hot-start" polymerase enzyme whose activity is blocked unless it is heated to high temperature (e.g., 90–98˚C) during the denaturation step of the first cycle, is commonly used to prevent non-specific priming during reaction preparation at lower temperatures. Chemically mediated hot-start PCRs require higher temperatures and longer incubation times for polymerase activation, compared with antibody or aptamer-based hot-start PCRs. Other methods to increase specificity include
Nested PCR Nested polymerase chain reaction (nested PCR) is a modification of polymerase chain reaction intended to reduce non-specific binding in products due to the amplification of unexpected primer binding sites. Polymerase chain reaction Polymerase chai ...
and Touchdown PCR. Computer simulations of theoretical PCR results ( Electronic PCR) may be performed to assist in primer design. Touchdown polymerase chain reaction or touchdown style polymerase chain reaction is a method of polymerase chain reaction by which primers will avoid amplifying nonspecific sequences. The annealing temperature during a polymerase chain reaction determines the specificity of primer annealing. The melting point of the primer sets the upper limit on annealing temperature. At temperatures just below this point, only very specific base pairing between the primer and the template will occur. At lower temperatures, the primers bind less specifically. Nonspecific primer binding obscures polymerase chain reaction results, as the nonspecific sequences to which primers anneal in early steps of amplification will "swamp out" any specific sequences because of the exponential nature of polymerase amplification. The earliest steps of a touchdown polymerase chain reaction cycle have high annealing temperatures. The annealing temperature is decreased in increments for every subsequent set of cycles (the number of individual cycles and increments of temperature decrease is chosen by the experimenter). The primer will anneal at the highest temperature which is least-permissive of nonspecific binding that it is able to tolerate. Thus, the first sequence amplified is the one between the regions of greatest primer specificity; it is most likely that this is the sequence of interest. These fragments will be further amplified during subsequent rounds at lower temperatures, and will out compete the nonspecific sequences to which the primers may bind at those lower temperatures. If the primer initially (during the higher-temperature phases) binds to the sequence of interest, subsequent rounds of polymerase chain reaction can be performed upon the product to further amplify those fragments.


Primer dimers

Annealing of the 3' end of one primer to itself or the second primer may cause primer extension, resulting in the formation of so-called primer dimers, visible as low-molecular-weight bands on PCR gels. Primer dimer formation often competes with formation of the DNA fragment of interest, and may be avoided using primers that are designed such that they lack complementarity—especially at the 3' ends—to itself or the other primer used in the reaction. If primer design is constrained by other factors and if primer-dimers do occur, methods to limit their formation may include optimisation of the MgCl2 concentration or increasing the annealing temperature in the PCR.


Deoxynucleotides

Deoxynucleotides (dNTPs) may bind Mg2+ ions and thus affect the concentration of free magnesium ions in the reaction. In addition, excessive amounts of dNTPs can increase the error rate of DNA polymerase and even inhibit the reaction. An imbalance in the proportion of the four dNTPs can result in misincorporation into the newly formed DNA strand and contribute to a decrease in the fidelity of DNA polymerase.


References

{{reflist Biochemistry methods DNA Molecular biology Polymerase chain reaction