P27 (gene)
   HOME

TheInfoList



OR:

Cyclin-dependent kinase inhibitor 1B (p27Kip1) is an
enzyme inhibitor An enzyme inhibitor is a molecule that binds to an enzyme and blocks its activity. Enzymes are proteins that speed up chemical reactions necessary for life, in which substrate molecules are converted into products. An enzyme facilitates a sp ...
that in humans is encoded by the CDKN1B
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
. It encodes a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
which belongs to the ''Cip/Kip'' family of cyclin dependent kinase (Cdk) inhibitor proteins. The encoded protein binds to and prevents the activation of
cyclin E Cyclin E is a member of the cyclin family. Cyclin E binds to G1 phase Cdk2, which is required for the transition from G1 to S phase of the cell cycle that determines initiation of DNA duplication. The Cyclin E/CDK2 complex phosphorylates p27K ...
-
CDK2 Cyclin-dependent kinase 2, also known as cell division protein kinase 2, or Cdk2, is an enzyme that in humans is encoded by the ''CDK2'' gene. The protein encoded by this gene is a member of the cyclin-dependent kinase family of Ser/Thr protein ...
or
cyclin D Cyclin D is a member of the cyclin protein family that is involved in regulating cell cycle progression. The synthesis of cyclin D is initiated during G1 and drives the G1/S phase transition. Cyclin D protein is anywhere from 155 (in zebra mu ...
- CDK4 complexes, and thus controls the
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and sub ...
progression at G1. It is often referred to as a
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and sub ...
inhibitor protein because its major function is to stop or slow down the
cell division cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and subse ...
.


Function

The p27Kip1 gene has a DNA sequence similar to other members of the "Cip/Kip" family which include the p21Cip1/Waf1 and p57Kip2 genes. In addition to this structural similarity the "Cip/Kip" proteins share the functional characteristic of being able to bind several different classes of Cyclin and Cdk molecules. For example, p27Kip1 binds to
cyclin D Cyclin D is a member of the cyclin protein family that is involved in regulating cell cycle progression. The synthesis of cyclin D is initiated during G1 and drives the G1/S phase transition. Cyclin D protein is anywhere from 155 (in zebra mu ...
either alone, or when complexed to its catalytic subunit CDK4. In doing so p27Kip1 inhibits the
catalytic Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
activity of Cdk4, which means that it prevents Cdk4 from adding
phosphate In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid . The phosphate or orthophosphate ion is derived from phosph ...
residues to its principal substrate, the
retinoblastoma Retinoblastoma (Rb) is a rare form of cancer that rapidly develops from the immature cells of a retina, the light-detecting tissue of the eye. It is the most common primary malignant intraocular cancer in children, and it is almost exclusively fo ...
( pRb) protein. Increased levels of the p27Kip1 protein typically cause cells to arrest in the
G1 phase The G1 phase, gap 1 phase, or growth 1 phase, is the first of four phases of the cell cycle that takes place in eukaryotic cell division. In this part of interphase, the cell synthesizes mRNA and proteins in preparation for subsequent steps lead ...
of the cell cycle. Likewise, p27Kip1 is able to bind other Cdk proteins when complexed to cyclin subunits such as
Cyclin E Cyclin E is a member of the cyclin family. Cyclin E binds to G1 phase Cdk2, which is required for the transition from G1 to S phase of the cell cycle that determines initiation of DNA duplication. The Cyclin E/CDK2 complex phosphorylates p27K ...
/
Cdk2 Cyclin-dependent kinase 2, also known as cell division protein kinase 2, or Cdk2, is an enzyme that in humans is encoded by the ''CDK2'' gene. The protein encoded by this gene is a member of the cyclin-dependent kinase family of Ser/Thr protein ...
and
Cyclin A Cyclin A is a member of the cyclin family, a group of proteins that function in regulating progression through the cell cycle. The stages that a cell passes through that culminate in its division and replication are collectively known as the ce ...
/
Cdk2 Cyclin-dependent kinase 2, also known as cell division protein kinase 2, or Cdk2, is an enzyme that in humans is encoded by the ''CDK2'' gene. The protein encoded by this gene is a member of the cyclin-dependent kinase family of Ser/Thr protein ...
.


Regulation

In general, extracellular growth factors which promote cell division reduce transcription and translation of p27Kip1. Also, increased synthesis of CDk4,6/cyclin D causes binding of p27 to this complex, sequestering it from binding to the CDk2/cyclin E complex. Furthermore, an active CDK2/cyclin E complex will phosphorylate p27 and tag p27 for ubiquitination. A mutation of this gene may lead to loss of control over the cell cycle leading to uncontrolled cellular proliferation. Loss of p27 expression has been observed in metastatic canine mammary carcinomas. Decreased TGF-beta signalling has been suggested to cause loss of p27 expression in this tumor type. A structured ''cis''-regulatory element has been found in the 5' UTR of the P27
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
where it is thought to regulate translation relative to
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and sub ...
progression. P27 regulation is accomplished by two different mechanisms. In the first its concentration is changed by the individual rates of transcription, translation, and proteolysis. P27 can also be regulated by changing its subcellular location Both mechanisms act to reduce levels of p27, allowing for the activation of Cdk1 and Cdk2, and for the cell to begin progressing through the cell cycle.


Transcription

Transcription of the CDKN1B gene is activated by Forkhead box class O family (FoxO) proteins which also acts downstream to promote p27 nuclear localization and decrease levels of COP9 subunit 5(COPS5) which helps in the degradation of p27. Transcription for p27 is activated by FoxO in response to cytokines, promyelocytic leukaemia proteins, and nuclear Akt signaling. P27 transcription has also been linked to another tumor suppressor gene, MEN1, in pancreatic islet cells where it promotes CDKN1B expression.


Translation

Translation of CDKN1B reaches its maximum during quiescence and early G1. Translation is regulated by polypyrimidine tract-binding protein(PTB), ELAVL1, ELAVL4, and microRNAs. PTB acts by binding CDKN1b IRES to increase translation and when PTB levels decrease, G1 phase is shortened. ELAVL1 and ELAVL4 also bind to CDKN1B IRES but they do so in order to decrease translation and so depletion of either results in G1 arrest.


Proteolysis

Degradation of the p27 protein occurs as cells exit quiescence and enter G1. Protein levels continue to fall rapidly as the cell continues through G1 and enters S phase. One of the most understood mechanisms for p27 proteolysis is the polyubiquitylation of p27 by the SCFSKP2 kinase associated protein 1 (Skp1) and 2 (Skp2). SKP1 and Skp2 degrades p27 after it has been phosphorylated at threonine 187 (Thr187) by either activating cyclin E- or cyclin A-CDK2. Skp2 is mainly responsible for the degradation of p27 levels that continues through S phase. However it is rarely expressed in early G1 where p27 levels first begin to decrease. During early G1 proteolysis of p27 is regulated by KIP1 Ubiquitylation Promoting Complex (KPC) which binds to its CDK inhibitory domain. P27 also has three Cdk-inhibited tyrosines at residues 74, 88, and 89. Of these, Tyr74 is of special interest because it is specific to p27-type inhibitors.


Nuclear export

Alternatively to the transcription, translation, and protelytic method of regulation, p27 levels can also be changed by exporting p27 to the cytoplasm. This occurs when p27 is phosphorylated on Ser(10) which allows for CRM1, a nuclear export carrier protein, to bind to and remove p27 from the nucleus. Once p27 is excluded from the nucleus it cannot inhibit the cell's growth. In the cytoplasm it may be degraded entirely or retained. This step occurs very early when the cell is exiting the quiescent phase and thus is independent of Skp2 degradation of p27.


MicroRNA regulation

Because p27 levels can be moderated at the translational level, it has been proposed that p27 may be regulated by miRNAs. Recent research has suggested that both miR-221 and miR-222 control p27 levels although the pathways are not well understood.


Role in cancer


Proliferation

p27 is considered a tumor suppressor because of its function as a regulator of the cell cycle. In cancers it is often inactivated via impaired synthesis, accelerated degradation, or mislocalization. Inactivation of p27 is generally accomplished post-transcription by the oncogenic activation of various pathways including receptor tyrosine kinases (RTK), phosphatilidylinositol 3-kinase (PI3K), SRC, or Ras-mitogen activated protein kinase(MAPK). These act to accelerate the proteolysis of the p27 protein and allow the cancer cell to undergo rapid division and uncontrolled proliferation. When p27 is phosphorylated by Src at tyrosine 74 or 88 it ceases to inhibit cyclinE-cdk2. Src was also shown to reduce the half life of p27 meaning it is degraded faster. Many epithelial cancers are known to overexpress EGFR which plays a role in the proteolysis of p27 and in Ras-driven proteolysis. Non-epithelial cancers use different pathways to inactivate p27. Many cancer cells also upregulate Skp2 which is known to play an active role in the proteolysis of p27 As a result, Skp2 is inversely related to p27 levels and directly correlates with tumor grade in many malignancies.


Metastasis

In cancer cells, p27 can also be mislocalized to the cytoplasm in order to facilitate metastasis. The mechanisms by which it acts on motility differ between cancers. In hepatocellular carcinoma cells p27 co-localizes with actin fibers to act on GTPase Rac and induce cell migration. In breast cancer cytoplasmic p27 reduced RHOA activity which increased a cell's propensity for motility. This role for p27 may indicate why cancer cells rarely fully inactivate or delete p27. By retaining p27 in some capacity it can be exported to the cytoplasm during tumorigenesis and manipulated to aid in metastasis. 70% of metastatic melanomas were shown to exhibit cytoplasmic p27, while in benign melanomas p27 remained localized to the nucleus. P27 is misplaced to the cytoplasm by the MAP2K, Ras, and Akt pathways although the mechanisms are not entirely understood. Additionally, phosphorylation of p27 at T198 by RSK1 has been shown to mislocalize p27 to the cytoplasm as well as inhibit the RhoA pathway. Because inhibition of RhoA results in a decrease in both stress fibers and focal adhesion, cell motility is increased. P27 can also be exported to the cytoplasm by oncogenic activation of the P13K pathway. Thus, mislocalization of p27 to the cytoplasm in cancer cells allows them to proliferate unchecked and provides for increased motility. In contrast to these results, p27 has also been shown to be an inhibitor of migration in sarcoma cells. In these cells, p27 bound to stathmin which prevents stathmin from binding to tubulin and thus polymerization of microtubules increased and cell motility decreased.


MicroRNA regulation

Studies of various cell lines including
glioblastoma Glioblastoma, previously known as glioblastoma multiforme (GBM), is one of the most aggressive types of cancer that begin within the brain. Initially, signs and symptoms of glioblastoma are nonspecific. They may include headaches, personality ...
cell lines, three prostate cancer cell lines, and a breast tumor cell line showed that suppressing miR-221 and miR-22 expression resulted in p27-dependent G1 growth arrest Then when p27 was knocked down, cell growth resumed indicating a strong role for miRNA regulated p27. Studies in patients have demonstrated an inverse correlation between miR-221&22 and p27 protein levels. Additionally nearby healthy tissue showed high expression of the p27 protein while miR-221&22 concentrations were low.


Regulation in specific cancers

In most cancers reduced levels of nuclear p27 are correlated with increased tumor size, increased tumor grade, and a higher propensity for metastasis. However the mechanisms by which levels of p27 are regulated vary between cancers.


Breast

In breast cancer, Src activation has been shown to correlate with low levels of p27 Breast cancers that were Estrogen receptor negative and progesterone receptor negative were more likely to display low levels of p27 and more likely to have a high tumor grade. Similarly, breast cancer patients with BRCA1/2 mutations were more likely to have low levels of p27.


Prostate

A mutation in the CDKN1B gene has been linked to an increased risk for hereditary prostate cancer in humans.


Multiple Endocrine Neoplasia

Mutations in the CDKN1B gene has been reported in families affected by the development of
primary hyperparathyroidism Primary hyperparathyroidism (or PHPT) is a medical condition where the parathyroid gland (or a benign tumor within it) produce excess amounts of parathyroid hormone (PTH). The symptoms of the condition relate to the resulting elevated serum calcium ...
and
pituitary adenomas Pituitary adenomas are tumors that occur in the pituitary gland. Most pituitary tumors are benign, approximately 35% are invasive and just 0.1% to 0.2% are carcinomas.multiple endocrine neoplasia Multiple endocrine neoplasia (abbreviated MEN) is a condition which encompasses several distinct syndromes featuring tumors of endocrine glands, each with its own characteristic pattern. In some cases, the tumors are malignant, in others, benig ...
, type 4). Testing for CDKN1B mutations has been recommended in patients with suspected MEN, in whom previous testing for, the more common MEN1/RET mutation, is negative.


Clinical significance


Prognostic value

Several studies have demonstrated that reduced p27 levels indicate a poorer patient prognosis. However, because of the dual, contrasting roles p27 plays in cancer (as an inhibitor of growth and as a mechanism for metastasis) low levels of p27 may demonstrate that a cancer is not aggressive and will remain benign. In ovarian cancer, p27 negative tumors progressed in 23 months compared to 85 months in p27 positive tumors and thus could be used as a prognostic marker. Similar studies have correlated low levels of p27 with a worse prognosis in breast cancer. Colorectal carcinomas that lacked p27 were shown to have increased p27-specific proteolysis and a median survival of only 69 months compared to 151 months for patients with high or normal levels of p27. The authors proposed clinicians could use patient specific levels of p27 to determine who would benefit from adjuvant therapy. Similar correlations were observed in patients with non-small cell lung cancer, those with colon, and prostate cancer. So far studies have only evaluated the prognostic value of p27 retrospectively and a standardized scoring system has not been established. However it has been proposed that clinicians should evaluate a patient's p27 levels in order to determine if they will be responsive to certain chemotoxins which target fast growing tumors where p27 levels are low. Or in contrast, if p27 levels are found to be high in a patient's cancer, their risk for metastasis is higher and the physician can make an informed decision about their treatment plan. Because p27 levels are controlled post-transcriptionally, proteomic surveys can be used to establish and monitor a patient's individual levels which aids in the future of individualized medicine. The following cancers have been demonstrated to have an inverse correlation with p27 expression and prognosis: oro-pharyngo-laryngeal, oesophageal, gastric, colon, lung, melanoma, glioma, breast cancer, prostate, lymphoma, leukemia.


Correlation to treatment response

P27 may also allow clinicians to better select an appropriate treatment for a patient. For example, patients with non-small cell lung cancer who were treated with platinum based chemotherapy showed reduced survival if they had low levels of p27. Similarly low levels of p27 correlated with poor results from adjuvant chemotherapy in breast cancer patients.


Value as a therapeutic target

P27 has been explored as a potential target for cancer therapy because its levels are highly correlated to patient prognosis. This is true for a wide spectrum of cancers including colon, breast, prostate, lung, liver, stomach, and bladder.


Use of microRNAs for therapy

Because of the role miRNAs play in p27 regulation, research is underway to determine if antagomiRs that block the activity of the miR221&222 and allow for p27 cell grow inhibition to take place could act as therapeutic cancer drugs.


Role in Regeneration

Knockdown of CDKN1B stimulates regeneration of cochlear hair cells in mice. Since CDKN1B prevents cells from entering the
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and sub ...
, inhibition of the protein could cause re-entry and subsequent division. In mammals where regeneration of cochlear
hair cell Hair cells are the sensory receptors of both the auditory system and the vestibular system in the ears of all vertebrates, and in the lateral line organ of fishes. Through mechanotransduction, hair cells detect movement in their environment. ...
s normally does not occur, this inhibition could help regrow damaged cells who are otherwise incapable of proliferation. In fact, when the CDKN1B gene is disrupted in adult mice,
hair cell Hair cells are the sensory receptors of both the auditory system and the vestibular system in the ears of all vertebrates, and in the lateral line organ of fishes. Through mechanotransduction, hair cells detect movement in their environment. ...
s of the
organ of Corti The organ of Corti, or spiral organ, is the receptor organ for hearing and is located in the mammalian cochlea. This highly varied strip of epithelial cells allows for transduction of auditory signals into nerve impulses' action potential. Transd ...
proliferate, while those in control mice do not. Lack of CDKN1B expression appears to release the hair cells from natural cell-cycle arrest. Because
hair cell Hair cells are the sensory receptors of both the auditory system and the vestibular system in the ears of all vertebrates, and in the lateral line organ of fishes. Through mechanotransduction, hair cells detect movement in their environment. ...
death in the human
cochlea The cochlea is the part of the inner ear involved in hearing. It is a spiral-shaped cavity in the bony labyrinth, in humans making 2.75 turns around its axis, the modiolus. A core component of the cochlea is the Organ of Corti, the sensory or ...
is a major cause of
hearing loss Hearing loss is a partial or total inability to hear. Hearing loss may be present at birth or acquired at any time afterwards. Hearing loss may occur in one or both ears. In children, hearing problems can affect the ability to acquire spoken ...
, the CDKN1B protein could be an important factor in the clinical treatment of
deafness Deafness has varying definitions in cultural and medical contexts. In medical contexts, the meaning of deafness is hearing loss that precludes a person from understanding spoken language, an audiological condition. In this context it is written ...
.


Interactions

CDKN1B has been shown to interact with: *
AKT1 RAC(Rho family)-alpha serine/threonine-protein kinase is an enzyme that in humans is encoded by the ''AKT1'' gene. This enzyme belongs to the AKT subfamily of serine/threonine kinases that contain SH2 (Src homology 2-like) protein domains. It ...
, * CKS1B, * Cyclin D3, *
Cyclin E1 G1/S-specific cyclin-E1 is a protein that in humans is encoded by the ''CCNE1'' gene. Function The protein encoded by this gene belongs to the highly conserved cyclin family, whose members are characterized by a dramatic periodicity in protei ...
, * Cyclin-dependent kinase 2, *
Cyclin-dependent kinase 4 Cyclin-dependent kinase 4 also known as cell division protein kinase 4 is an enzyme that in humans is encoded by the ''CDK4'' gene. CDK4 is a member of the cyclin-dependent kinase family. Function The protein encoded by this gene is a member ...
, * Grb2, * NUP50 *
SKP2 S-phase kinase-associated protein 2 is an enzyme that in humans is encoded by the ''SKP2'' gene. Structure and function Skp2 contains 424 residues in total with the ~40 amino acid F-box domain lying closer to the N-terminal region at the 94-1 ...
, * SPDYA, and *
XPO1 Exportin 1 (XPO1), also known as chromosomal region maintenance 1 (CRM1), is a eukaryotic protein that mediates the nuclear export of various proteins and RNAs. History XPO1 (CRM1) originally was identified in the fission yeast ''Schizosaccharom ...
.


See also

*
Sic1 Sic1, a protein, is a stoichiometric inhibitor of Cdk1-Clb ( B-type cyclins) complexes in the budding yeast ''Saccharomyces cerevisiae''. Because B-type cyclin-Cdk1 complexes are the drivers of S-phase initiation, Sic1 prevents premature S-phase ...
(homologue in ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungus microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have b ...
'') * P21waf-1 (another CDK inhibitor) *
Hyaluronic acid synthase Hyaluronan synthases (HAS) are membrane-bound enzymes that use UDP-α-N-acetyl-D-glucosamine and UDP-α-D-glucuronate as substrates to produce the glycosaminoglycan hyaluronan at the cell surface and extrude it through the membrane into the extrac ...
*
Hyaluronidase Hyaluronidases are a family of enzymes that catalyse the degradation of hyaluronic acid (HA). Karl Meyer classified these enzymes in 1971, into three distinct groups, a scheme based on the enzyme reaction products. The three main types of hyal ...


References


Further reading

* * * * * * * *


External links

* * * {{Tumor suppressor genes Cell cycle regulators Tumor suppressor genes