P-process
   HOME

TheInfoList



OR:

The term p-process (''p'' for
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
) is used in two ways in the scientific literature concerning the
astrophysical Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the h ...
origin of the elements (
nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
). Originally it referred to a proton capture process which is the source of certain, naturally occurring, neutron-deficient
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
s of the elements from
selenium Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, ...
to
mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
. These
nuclide A nuclide (or nucleide, from nucleus, also known as nuclear species) is a class of atoms characterized by their number of protons, ''Z'', their number of neutrons, ''N'', and their nuclear energy state. The word ''nuclide'' was coined by Truman ...
s are called
p-nuclei p-nuclei (''p'' stands for proton-rich) are certain proton-rich, naturally occurring isotopes of some elements between selenium and mercury inclusive which cannot be produced in either the s- or the r-process. Definition The classical, gro ...
and their origin is still not completely understood. Although it was shown that the originally suggested process cannot produce the p-nuclei, later on the term p-process was sometimes used to generally refer to any
nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
process supposed to be responsible for the p-nuclei. Often, the two meanings are confused. Recent scientific literature therefore suggests to use the term p-process only for the actual proton capture process, as it is customary with other nucleosynthesis processes in astrophysics.


The proton capture p-process

Proton-rich nuclides can be produced by sequentially adding one or more protons to an
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron i ...
. Such a
nuclear reaction In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two atomic nucleus, nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a t ...
of type (p,γ) is called ''proton capture reaction''. By adding a proton to a nucleus, the element is changed because the chemical element is defined by the
proton number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
of a nucleus. At the same time the ratio of protons to
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s is changed, resulting in a more neutron-deficient isotope of the next element. This led to the original idea for the production of p-nuclei: free protons (the nuclei of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s are present in stellar plasmas) should be captured on heavy nuclei (''seed nuclei'') also already present in the stellar plasma (previously produced in the ''s''-process and/or ''r''-process). Such proton captures on
stable nuclide Stable nuclides are nuclides that are not radioactive and so (unlike radionuclides) do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes. Th ...
s (or nearly stable), however, are not very efficient in producing p-nuclei, especially the heavier ones, because the
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
increases with each added proton, leading to an increased repulsion of the next proton to be added, according to
Coulomb's law Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventiona ...
. In the context of nuclear reactions this is called a
Coulomb barrier The Coulomb barrier, named after Coulomb's law, which is in turn named after physicist Charles-Augustin de Coulomb, is the energy barrier due to electrostatic interaction that two nuclei need to overcome so they can get close enough to undergo a ...
. The higher the Coulomb barrier, the more
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its accele ...
a proton requires to get close to a nucleus and be captured by it. The average energy of the available protons is given by the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
of the stellar plasma. Even if this temperature could be increased arbitrarily (which is not the case in stellar environments), protons would be removed faster from a nucleus by
photodisintegration Photodisintegration (also called phototransmutation, or a photonuclear reaction) is a nuclear process in which an atomic nucleus absorbs a high-energy gamma ray, enters an excited state, and immediately decays by emitting a subatomic particle. The ...
than they could be captured at high temperature. A possible alternative would be to have a very large number of protons available to increase the effective number of proton captures per second without having to raise the temperature too much. Such conditions, however, are not found in core-collapse supernovae which were supposed to be the site of the p-process. Proton captures at extremely high proton densities are called rapid proton capture processes. They are distinct from the p-process not only by the required high proton density but also by the fact that very short-lived
radionuclides A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transfer ...
are involved and the reaction path is located close to the
proton drip line The nuclear drip line is the boundary beyond which atomic nuclei decay by the emission of a proton or neutron. An arbitrary combination of protons and neutrons does not necessarily yield a stable nucleus. One can think of moving up and/or to ...
. Rapid proton capture processes are the
rp-process The rp-process (rapid proton capture process) consists of consecutive proton captures onto seed nuclei to produce heavier elements. It is a nucleosynthesis process and, along with the ''s''-process and the ''r''-process, may be responsible fo ...
, the νp-process, and the pn-process.


History

The term p-process was originally proposed in the famous B2FH paper in 1957. The authors assumed that this process was solely responsible for the p-nuclei and proposed that it occurs in the hydrogen-shell (see also
stellar evolution Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is cons ...
) of a
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
exploding as a
type II supernova A Type II supernova (plural: ''supernovae'' or ''supernovas'') results from the rapid collapse and violent explosion of a massive star. A star must have at least 8 times, but no more than 40 to 50 times, the mass of the Sun () to undergo this ...
. It was shown later that the required conditions are not found in such supernovae. At the same time as B2FH, Alastair Cameron independently realized the necessity to add another nucleosynthesis process to neutron capture nucleosynthesis but simply mentioned proton captures without assigning a special name to the process. He also thought about alternatives, for example photodisintegration (called the γ-process today) or a combination of p-process and photodisintegration.


See also

*
p-nuclei p-nuclei (''p'' stands for proton-rich) are certain proton-rich, naturally occurring isotopes of some elements between selenium and mercury inclusive which cannot be produced in either the s- or the r-process. Definition The classical, gro ...
*
Nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
*
rp-process The rp-process (rapid proton capture process) consists of consecutive proton captures onto seed nuclei to produce heavier elements. It is a nucleosynthesis process and, along with the ''s''-process and the ''r''-process, may be responsible fo ...


References

{{supernovae Nuclear physics Astrophysics Nucleosynthesis Supernovae Proton