Organic electrochemical transistor
   HOME

TheInfoList



OR:

The organic electrochemical transistor (OECT) is an organic electronic device which functions like a
transistor upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
. The current flowing through the device is controlled by the exchange of
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
s between an electrolyte and the OECT channel composed of an organic conductor or
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
. The exchange of ions is driven by a voltage applied to the gate electrode which is in ionic contact with the channel through the electrolyte. The migration of ions between the channel and the electrolyte is accompanied by electrochemical redox reactions occurring in the channel material. The electrochemical redox of the channel along with ion migration changes the conductivity of the channel in a process called electrochemical doping. OECTs are being explored for applications in
biosensor A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
s,
bioelectronics Bioelectronics is a field of research in the convergence of biology and electronics. Definitions At the first C.E.C. Workshop, in Brussels in November 1991, bioelectronics was defined as 'the use of biological materials and biological architectu ...
and large-area, low-cost electronics. OECTs can also be used as multi-bit memory devices that mimic the synaptic functionalities of the brain. For this reason, OECTs can be also being investigated as elements in neuromorphic computing applications.


OECT device construction and operating mechanism

OECTs consist of a semiconductor or even conductor thin-film (the channel), usually made of a conjugated polymer, which is in direct contact with an electrolyte. Source and drain electrodes establish electrical contact to the channel, while a gate electrode establishes electrical contact to the electrolyte. The electrolyte can be liquid, gel, or solid. In the most common biasing configuration, the source is grounded and a voltage (drain voltage) is applied to the drain. This causes a current to flow (drain current), due to electronic charge (usually holes) present in the channel. When a voltage is applied to the gate, ions from the electrolyte are injected in the channel and change the electronic charge density, and hence the drain current. When the gate voltage is removed, the injected ions return to the electrolyte and the drain current goes back to its original value. However, some channel materials can holds the migrated ions even after removing the gate voltage enabling their use as memory devices. OECTs commonly use PEDOT:PSS are the channel material, and work in the depletion mode. The
organic semiconductor Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in the form of molecular crystals or ...
PEDOT is doped p-type by the
sulfonate In organosulfur chemistry, a sulfonate is a salt or ester of a sulfonic acid. It contains the functional group , where R is an organic group. Sulfonates are the conjugate bases of sulfonic acids. Sulfonates are generally stable in water, non-o ...
anions of present in PSS and hence PEDOT:PSS exhibits a high electronic conductivity. When no gate voltage is applied, a high drain current flows through the highly conductive channel, and the OECT is said to be in the ON state. When a positive voltage is applied to the gate,
cations An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by con ...
from the electrolyte are injected into the PEDOT:PSS channel, where they compensate the negative charge on the sulfonate anions. This leads to electrochemical reduction of PEDOT from its oxidised state to its neutral state resulting in de-doping of the OECT channel. The OECT is then said to be in the OFF state. Accumulation mode OECTs, based on
intrinsic In science and engineering, an intrinsic property is a property of a specified subject that exists itself or within the subject. An extrinsic property is not essential or inherent to the subject that is being characterized. For example, mass ...
organic semiconductors (for example p(g2T-TT)), have also been described. OECTs are different from electrolyte-gated
field-effect transistor The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs ( JFETs or MOSFETs) are devices with three terminals: ''source'', ''gate'', and ''drain''. FETs cont ...
s. In the latter type of device, ions do not penetrate into the channel, but rather accumulate near its surface (or near the surface of a dielectric layer, when such a layer is deposited on the channel). This induces accumulation of electronic charge inside the channel, near the surface. In contrast, in OECTs, ions are injected into the channel and change the electronic charge density throughout its entire volume. As a result of this bulk coupling between ionic and electronic charge, OECTs show a very high
transconductance Transconductance (for transfer conductance), also infrequently called mutual conductance, is the electrical characteristic relating the current through the output of a device to the voltage across the input of a device. Conductance is the reciproc ...
along with an outstanding intrinsic gain. The disadvantage of OECTs is that they are slow, as they are limited by the inherently slow migration of ions into and out of the channel. However, micro-fabricated OECTs show response times of the order of hundreds of
microseconds A microsecond is a unit of time in the International System of Units (SI) equal to one millionth (0.000001 or 10−6 or ) of a second. Its symbol is μs, sometimes simplified to us when Unicode is not available. A microsecond is equal to 1000 ...
. Accurate simulation of OECTs is possible using the drift-diffusion model. OECTs were first developed in the 80’s by the group of Mark Wrighton. They are currently the focus of intense development for applications in
bioelectronics Bioelectronics is a field of research in the convergence of biology and electronics. Definitions At the first C.E.C. Workshop, in Brussels in November 1991, bioelectronics was defined as 'the use of biological materials and biological architectu ...
, and in large-area, low-cost
electronics The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
. Advantages such as straightforward fabrication and miniaturization, compatibility with low-cost printing techniques, compatibility with a wide range of mechanical supports (including fibers, paper, plastic and elastomer), and stability in aqueous environments, led to their use in a variety of applications in biosensors. Moreover, their high transconductance makes OECTs powerful amplifying transducers. OECTs have been used to detect
ions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
,
neurotransmitters A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neurot ...
,
metabolites In biochemistry, a metabolite is an intermediate or end product of metabolism. The term is usually used for small molecules. Metabolites have various functions, including fuel, structure, signaling, stimulatory and inhibitory effects on enzymes, ...
, DNA, pathogenic organisms, as well as to probe cell adhesion, measure the integrity of barrier tissue, detect
epileptic Epilepsy is a group of non-communicable neurological disorders characterized by recurrent epileptic seizures. Epileptic seizures can vary from brief and nearly undetectable periods to long periods of vigorous shaking due to abnormal electrical ...
activity in rats, and interface with electrically active cells and tissues.


External links


Bioelectronics Laboratory, University of Cambridge

Department of Bioelectronics, Ecole des Mines de St. Etienne

Laboratory of Organic Electronics, Linkoping University

C. Dan Frisbie Research group, University of Minnesota


References

{{reflist Organic electronics Transistor types