Opsonin
   HOME

TheInfoList



OR:

Opsonins are extracellular proteins that, when bound to substances or cells, induce phagocytes to phagocytose the substances or cells with the opsonins bound. Thus, opsonins act as tags to label things in the body that should be phagocytosed (i.e. eaten) by phagocytes (cells that specialise in
phagocytosis Phagocytosis () is the process by which a cell uses its plasma membrane to engulf a large particle (≥ 0.5 μm), giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs phagocytosis is ...
, i.e. cellular eating). Different types of things ("targets") can be tagged by opsonins for phagocytosis, including: pathogens (such as bacteria), cancer cells, aged cells, dead or dying cells (such as apoptotic cells), excess
synapses In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell. Synapses are essential to the transmission of nervous impulses fr ...
, or protein aggregates (such as
amyloid plaques Amyloid plaques (also known as neuritic plaques, amyloid beta plaques or senile plaques) are extracellular deposits of the amyloid beta (Aβ) protein mainly in the grey matter of the brain. Degenerative neuronal elements and an abundance of mic ...
). Opsonins help clear pathogens, as well as dead, dying and diseased cells. Opsonins were discovered and named "opsonins" in 1904 by Wright and Douglas, who found that incubating bacteria with blood plasma enabled phagocytes to phagocytose (and thereby destroy) the bacteria. They concluded that: “We have here conclusive proof that the blood fluids modify the bacteria in a manner which renders them a ready prey to the phagocytes. We may speak of this as an “opsonic” effect (opsono - I cater for; I prepare victuals for), and we may employ the term “opsonins” to designate the elements in the blood fluids which produce this effect.” Subsequent research found two main types of opsonin in blood that opsonised bacteria: complement proteins and
antibodies An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and viruses. The antibody recognizes a unique molecule of ...
. However, there are now known to be at least 50 proteins that act as opsonins for pathogens or other targets.


Mechanisms

Opsonins induce phagocytosis of targets by binding the targets (e.g. bacteria) and then also binding phagocytic receptors on phagocytes. Thus, opsonins act as bridging molecules between the target and the phagocyte, bringing them into contact, and then usually activating the phagocytic receptor to induce engulfment of the target by the phagocyte. All cell membranes have negative charges ( zeta potential) which makes it difficult for two cells to come close together. When opsonins bind to their targets they boost the kinetics of phagocytosis by favoring interaction between the opsonin and cell surface receptors on immune cells. This overrides the negative charges from cell membranes. It is important that opsonins do not tag healthy, non-pathogenic cells for phagocytosis, as phagocytosis results in digestion and thus destruction of targets. Therefore, Some opsonins (including some complement proteins) have evolved to bind Pathogen-associated molecular patterns, molecules only found on the surface of pathogens, enabling phagocytosis of these pathogens, and thus innate immunity. Antibodies bind to
antigens In immunology, an antigen (Ag) is a molecule or molecular structure or any foreign particulate matter or a pollen grain that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. ...
on the pathogen surface, enabling adaptive immunity. Opsonins that opsonise host body cells (e.g. GAS6 that opsonises apoptotic cells) bind to "eat-me" signals (such as
phosphatidylserine Phosphatidylserine (abbreviated Ptd-L-Ser or PS) is a phospholipid and is a component of the cell membrane. It plays a key role in cell cycle signaling, specifically in relation to apoptosis. It is a key pathway for viruses to enter cells via ap ...
) exposed by dead, dying or stressed cells.


Types

Opsonins are related to the two types of
immune system The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splinte ...
s: the
adaptive immune system The adaptive immune system, also known as the acquired immune system, is a subsystem of the immune system that is composed of specialized, systemic cells and processes that eliminate pathogens or prevent their growth. The acquired immune system ...
and the
innate immune system The innate, or nonspecific, immune system is one of the two main immunity strategies (the other being the adaptive immune system) in vertebrates. The innate immune system is an older evolutionary defense strategy, relatively speaking, and is the ...
.


Adaptive

Antibodies are synthesized by
B cell B cells, also known as B lymphocytes, are a type of white blood cell of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules which may be either secreted o ...
s and are secreted in response to recognition of specific antigenic epitopes, and bind only to specific epitopes (regions) on an antigen. They comprise the adaptive opsonization pathway, and are composed of two fragments: the antigen binding region (Fab region) and the fragment crystallizable region (Fc region). The Fab region is able to bind to a specific epitope on an antigen, such as a specific region of a bacterial surface protein. The Fc region of
IgG Immunoglobulin G (Ig G) is a type of antibody. Representing approximately 75% of serum antibodies in humans, IgG is the most common type of antibody found in blood circulation. IgG molecules are created and released by plasma B cells. Each IgG an ...
is recognized by the Fc Receptor (FcR) on
natural killer cell Natural killer cells, also known as NK cells or large granular lymphocytes (LGL), are a type of cytotoxic lymphocyte critical to the innate immune system that belong to the rapidly expanding family of known innate lymphoid cells (ILC) and repre ...
s and other
effector cell In cell biology, an effector cell is any of various types of cell that actively responds to a stimulus and effects some change (brings it about). Examples of effector cells include: * The muscle, gland or organ cell capable of responding to ...
s; the binding of IgG to antigen causes a
conformational change In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors. A macromolecule is usually flexible and dynamic. Its shape can change in response to changes in its environment or oth ...
that allows FcR to bind the Fc region and initiate attack on the pathogen through the release of lytic products. Antibody may also tag tumor cells or virally infected cells, with NK cells responding via the FcR; this process is known as antibody-dependent cellular cytotoxicity (ADCC). Both IgM and IgG undergo conformational change upon binding antigen that allows complement protein
C1q The complement component 1q (or simply C1q) is a protein complex involved in the complement system, which is part of the innate immune system. C1q together with C1r and C1s form the C1 complex. Antibodies of the adaptive immune system can bin ...
to associate with the Fc region of the antibody. C1q association eventually leads to the recruitment of complement C4b and
C3b C3b is the larger of two elements formed by the cleavage of complement component 3, and is considered an important part of the innate immune system. C3b is potent in opsonization: tagging pathogens, immune complexes (antigen-antibody), and apoptot ...
, both of which are recognized by complement receptor 1, 3, and 4 ( CR1, CR3, CR4), which are present on most phagocytes. In this way, the complement system participates in the adaptive immune response. C3d, a cleavage product of C3, recognizes pathogen-associated molecular patterns (
PAMPs Pathogen-associated molecular patterns (PAMPs) are small molecular motifs conserved within a class of microbes. They are recognized by toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) in both plants and animals. A vast arra ...
) and can opsonize molecules to the CR2 receptor on B cells. This lowers the threshold of interaction required for B cell activation via the
B cell receptor The B cell receptor (BCR) is a transmembrane protein on the surface of a B cell. A B cell receptor is composed of a membrane-bound immunoglobulin molecule and a signal transduction moiety. The former forms a type 1 transmembrane receptor protein, ...
, and aids in the activation of the adaptive response.


Innate

The complement system, independently of the adaptive immune response, is able to opsonize pathogen before adaptive immunity may even be required. Complement proteins involved in innate opsonization include C4b, C3b and
iC3b iC3b is a protein fragment that is part of the complement system, a component of the vertebrate immune system. iC3b is produced when complement factor I cleaves C3b.Robbins Basic Pathology 8th ed 2007. R Cotran, S Robbins, V Kumar, J Perkins. W.B. ...
. In the alternative pathway of complement activation, circulating C3b is deposited directly onto antigens with particular PAMPs, such as
lipopolysaccharide Lipopolysaccharides (LPS) are large molecules consisting of a lipid and a polysaccharide that are bacterial toxins. They are composed of an O- antigen, an outer core, and an inner core all joined by a covalent bond, and are found in the out ...
s on
gram-negative bacteria Gram-negative bacteria are bacteria that do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation. They are characterized by their cell envelopes, which are composed of a thin peptidoglycan cell wall ...
. C3b is recognized by CR1 on phagocytes. iC3b attaches to apoptotic cells and bodies and facilitates clearance of dead cells and remnants without initiating inflammatory pathways, through interaction with CR3 and CR4 on phagocytes. Mannose-binding lectins, or ficolins, along with
pentraxins Pentraxins (PTX), also known as pentaxins, are an evolutionary conserved family of proteins characterised by containing a pentraxin protein domain. Proteins of the pentraxin family are involved in acute immunological responses. They are a clas ...
and collectins are able to recognize certain types of
carbohydrate In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may o ...
s that are expressed on the cell membranes of
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
,
fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately fr ...
,
virus A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsk ...
es, and
parasites Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The entomologist E. O. Wilson ha ...
, and can act as opsonin by activating the complement system and phagocytic cells.


Targets


Apoptotic cells

A number of opsonins play a role in marking apoptotic cells for phagocytosis without a pro-inflammatory response. Members of the
pentraxin Pentraxins (PTX), also known as pentaxins, are an evolutionary conserved family of proteins characterised by containing a pentraxin protein domain. Proteins of the pentraxin family are involved in acute immunological responses. They are a clas ...
family can bind to apoptotic cell membrane components like phosphatidylcholine (PC) and phosphatidylethanolamine (PE). IgM antibodies also bind to PC. Collectin molecules such as
mannose-binding lectin Mannose-binding lectin (MBL), also called mannan-binding lectin or mannan-binding protein (MBP), is a lectin that is instrumental in innate immunity as an opsonin and via the lectin pathway. Structure MBL has an oligomeric structure (400-700 kDa) ...
(MBL), surfactant protein A (SP-A), and
SP-D Surfactant protein D, also known as SP-D, is a lung surfactant protein part of the collagenous family of proteins called collectin. In humans, SP-D is encoded by the ''SFTPD'' gene and is part of the innate immune system. Each SP-D subunit is com ...
interact with unknown ligands on apoptotic cell membranes. When bound to the appropriate ligand these molecules interact with phagocyte receptors, enhancing phagocytosis of the marked cell.
C1q The complement component 1q (or simply C1q) is a protein complex involved in the complement system, which is part of the innate immune system. C1q together with C1r and C1s form the C1 complex. Antibodies of the adaptive immune system can bin ...
is capable of binding directly to apoptotic cells. It can also indirectly bind to apoptotic cells via intermediates like IgM autoantibodies, MBL, and pentraxins. In both cases C1q activates complement, resulting in the cells being marked for phagocytosis by
C3b C3b is the larger of two elements formed by the cleavage of complement component 3, and is considered an important part of the innate immune system. C3b is potent in opsonization: tagging pathogens, immune complexes (antigen-antibody), and apoptot ...
and C4b. C1q is an important contributor to the clearance of apoptotic cells and debris. This process usually occurs in late apoptotic cells. Opsonization of apoptotic cells occurs by different mechanisms in a tissue-dependent pattern. For example, while C1q is necessary for proper apoptotic cell clearance in the peritoneal cavity, it is not important in the lungs where SP-D plays an important role.


Pathogens

As part of the late stage adaptive immune response, pathogens and other particles are marked by
IgG Immunoglobulin G (Ig G) is a type of antibody. Representing approximately 75% of serum antibodies in humans, IgG is the most common type of antibody found in blood circulation. IgG molecules are created and released by plasma B cells. Each IgG an ...
antibodies. These antibodies interact with Fc receptors on macrophages and neutrophils resulting in phagocytosis. The C1 complement complex can also interact with the Fc region of IgG and IgM immune complexes activating the classical complement pathway and marking the antigen with C3b. C3b can spontaneously bind to pathogen surfaces through the alternative complement pathway. Furthermore, pentraxins can directly bind to C1q from the C1 complex. SP-A opsonizes a number of bacterial and viral pathogens for clearance by lung alveolar macrophages.


See also

* Antibody opsonization


References


External links

* {{Use dmy dates, date=December 2020 Immune system