Opposite group
   HOME

TheInfoList



OR:

In
group theory In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen ...
, a branch of
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, an opposite group is a way to construct a group from another group that allows one to define right action as a special case of left action. Monoids, groups, rings, and algebras can be viewed as categories with a single object. The construction of the opposite category generalizes the opposite group, opposite ring, etc.


Definition

Let G be a group under the operation *. The opposite group of G, denoted G^, has the same underlying set as G, and its group operation \mathbin is defined by g_1 \mathbin g_2 = g_2 * g_1. If G is
abelian Abelian may refer to: Mathematics Group theory * Abelian group, a group in which the binary operation is commutative ** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms * Metabelian group, a grou ...
, then it is equal to its opposite group. Also, every group G (not necessarily abelian) is
naturally isomorphic In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
to its opposite group: An isomorphism \varphi: G \to G^ is given by \varphi(x) = x^. More generally, any antiautomorphism \psi: G \to G gives rise to a corresponding isomorphism \psi': G \to G^ via \psi'(g)=\psi(g), since : \psi'(g * h) = \psi(g * h) = \psi(h) * \psi(g) = \psi(g) \mathbin \psi(h)=\psi'(g) \mathbin \psi'(h).


Group action

Let X be an object in some category, and \rho: G \to \mathrm(X) be a right action. Then \rho^: G^ \to \mathrm(X) is a left action defined by \rho^(g)x = x\rho(g), or g^{\mathrm{opx = xg.


See also

* Opposite ring * Opposite category


External links


http://planetmath.org/oppositegroup
Group theory Representation theory