Operational amplifier applications
   HOME

TheInfoList



OR:

This article illustrates some typical operational amplifier applications. A non-ideal operational amplifier's equivalent circuit has a finite input impedance, a non-zero output impedance, and a finite gain. A real op-amp has a number of non-ideal features as shown in the diagram, but here a simplified schematic notation is used, many details such as device selection and power supply connections are not shown. Operational amplifiers are optimised for use with negative feedback, and this article discusses only negative-feedback applications. When positive feedback is required, a comparator is usually more appropriate. See
Comparator applications In electronics, a comparator is a device that compares two voltages or currents and outputs a digital signal indicating which is larger. It has two analog input terminals V_+ and V_- and one binary digital output V_\text. The output is ideally : ...
for further information.


Practical considerations


Operational amplifiers parameter requirements

In order for a particular device to be used in an application, it must satisfy certain requirements. The operational amplifier must * have large open-loop signal gain (voltage gain of 200,000 is obtained in early integrated circuit exemplars), and * have input impedance large with respect to values present in the feedback network. With these requirements satisfied, the op-amp is considered
ideal Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considered ...
, and one can use the method of virtual ground to quickly and intuitively grasp the 'behavior' of any of the op-amp circuits below.


Component specification

Resistors used in practical solid-state op-amp circuits are typically in the kΩ range. Resistors much greater than 1 MΩ cause excessive thermal noise and make the circuit operation susceptible to significant errors due to bias or leakage currents.


Input bias currents and input offset

Practical operational amplifiers draw a small current from each of their inputs due to bias requirements (in the case of bipolar junction transistor-based inputs) or leakage (in the case of MOSFET-based inputs). These currents flow through the resistances connected to the inputs and produce small voltage drops across those resistances. Appropriate design of the feedback network can alleviate problems associated with input bias currents and common-mode gain, as explained below. The heuristic rule is to ensure that the impedance "looking out" of each input terminal is identical. To the extent that the input bias currents do not match, there will be an effective input offset voltage present, which can lead to problems in circuit performance. Many commercial op-amp offerings provide a method for tuning the operational amplifier to balance the inputs (e.g., "offset null" or "balance" pins that can interact with an external voltage source attached to a potentiometer). Alternatively, a tunable external voltage can be added to one of the inputs in order to balance out the offset effect. In cases where a design calls for one input to be short-circuited to ground, that short circuit can be replaced with a variable resistance that can be tuned to mitigate the offset problem. Operational amplifiers using
MOSFET The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
-based input stages have input leakage currents that will be, in many designs, negligible.


Power supply effects

Although power supplies are not indicated in the (simplified) operational amplifier designs below, they are nonetheless present and can be critical in operational amplifier circuit design.


Supply noise

Power supply imperfections (e.g., power signal ripple, non-zero source impedance) may lead to noticeable deviations from ideal operational amplifier behavior. For example, operational amplifiers have a specified power supply rejection ratio that indicates how well the output can reject signals that appear on the power supply inputs. Power supply inputs are often noisy in large designs because the power supply is used by nearly every component in the design, and inductance effects prevent current from being instantaneously delivered to every component at once. As a consequence, when a component requires large injections of current (e.g., a digital component that is frequently switching from one state to another), nearby components can experience sagging at their connection to the power supply. This problem can be mitigated with appropriate use of bypass capacitors connected across each power supply pin and ground. When bursts of current are required by a component, the component can ''bypass'' the power supply by receiving the current directly from the nearby capacitor (which is then slowly recharged by the power supply).


Using power supply currents in the signal path

Additionally, current drawn into the operational amplifier from the power supply can be used as inputs to external circuitry that augment the capabilities of the operational amplifier. For example, an operational amplifier may not be fit for a particular high-gain application because its output would be required to generate signals outside of the safe range generated by the amplifier. In this case, an external push–pull amplifier can be controlled by the current into and out of the operational amplifier. Thus, the operational amplifier may itself operate within its factory specified bounds while still allowing the negative feedback path to include a large output signal well outside of those bounds.


Amplifiers

The first example is the differential amplifier, from which many of the other applications can be derived, including the inverting, non-inverting, and
summing amplifier This article illustrates some typical operational amplifier applications. A non-ideal operational amplifier's equivalent circuit has a finite input impedance, a non-zero output impedance, and a finite gain. A real op-amp has a number of non-ideal f ...
, the voltage follower,
integrator An integrator in measurement and control applications is an element whose output signal is the time integral of its input signal. It accumulates the input quantity over a defined time to produce a representative output. Integration is an importan ...
,
differentiator In electronics, a differentiator is a circuit that is designed such that the output of the circuit is approximately directly proportional to the rate of change (the time derivative) of the input. A true differentiator cannot be physically realized, ...
, and
gyrator A gyrator is a passive, linear, lossless, two-port electrical network element proposed in 1948 by Bernard D. H. Tellegen as a hypothetical fifth linear element after the resistor, capacitor, inductor and ideal transformer. Unlike the four conv ...
.


Differential amplifier (difference amplifier)

Amplifies the difference in voltage between its inputs. :The name "differential amplifier" must not be confused with the "
differentiator In electronics, a differentiator is a circuit that is designed such that the output of the circuit is approximately directly proportional to the rate of change (the time derivative) of the input. A true differentiator cannot be physically realized, ...
", which is also shown on this page. :The " instrumentation amplifier", which is also shown on this page, is a modification of the differential amplifier that also provides high input impedance. The circuit shown computes the difference of two voltages, multiplied by some gain factor. The output voltage :V_\text = \frac V_2 - \frac V_1 = \left( \frac \right) \cdot \left( \frac \right) V_2 - \frac V_1. Or, expressed as a function of the common-mode input ''V''com and difference input ''V''dif: :V_\text = (V_1 + V_2) / 2; V_\text = V_2 - V_1, the output voltage is :V_\text \frac = V_\text \frac + V_\text \frac. In order for this circuit to produce a signal proportional to the voltage difference of the input terminals, the coefficient of the ''V''com term (the common-mode gain) must be zero, or :R_1 / R_\text = R_2 / R_\text. With this constraintIf you think of the left-hand side of the relation as the closed-loop gain of the inverting input, and the right-hand side as the gain of the non-inverting input, then matching these two quantities provides an output insensitive to the common-mode voltage of V_1 and V_2. in place, the
common-mode rejection ratio In electronics, the common mode rejection ratio (CMRR) of a differential amplifier (or other device) is a metric used to quantify the ability of the device to reject common-mode signals, i.e. those that appear simultaneously and in-phase on bot ...
of this circuit is infinitely large, and the output :V_\text = \frac V_\text = \frac \left(V_2 - V_1\right), where the simple expression ''R''''f'' / ''R''1 represents the closed-loop gain of the differential amplifier. The special case when the closed-loop gain is unity is a differential follower, with :V_\text = V_2 - V_1.


Inverting amplifier

An inverting amplifier is a special case of the differential amplifier in which that circuit's non-inverting input ''V''2 is grounded, and inverting input ''V''1 is identified with ''V''in above. The closed-loop gain is ''R''f / ''R''in, hence :V_ = -\frac V_\!\,. The simplified circuit above is like the differential amplifier in the limit of ''R''2 and ''R''g very small. In this case, though, the circuit will be susceptible to input bias current drift because of the mismatch between ''R''f and ''R''in. To intuitively see the gain equation above, calculate the current in ''R''in: : i_ = \frac then recall that this same current must be passing through ''R''f, therefore (because ''V'' = ''V''+ = 0): : V_ = -i_ R_ = - V_ \frac A mechanical analogy is a seesaw, with the ''V'' node (between ''R''in and ''R''f) as the fulcrum, at ground potential. ''V''in is at a length ''R''in from the fulcrum; ''V''out is at a length ''R''f. When ''V''in descends "below ground", the output ''V''out rises proportionately to balance the seesaw, and ''vice versa''. As the negative input of the op-amp acts as a virtual ground, the input impedance of this circuit is equal to ''R''in.


Non-inverting amplifier

A non-inverting amplifier is a special case of the differential amplifier in which that circuit's inverting input ''V''1 is grounded, and non-inverting input ''V''2 is identified with ''V''in above, with ''R''1 ≫ ''R''2. Referring to the circuit immediately above, :V_ = \left(1 + \frac \right) V_\!\,. To intuitively see this gain equation, use the virtual ground technique to calculate the current in resistor ''R''1: : i_1 = \frac\,, then recall that this same current must be passing through ''R''2, therefore: : V_ = V_ + i_1 R_2 = V_ \left( 1 + \frac \right) Unlike the inverting amplifier, a non-inverting amplifier cannot have a gain of less than 1. A mechanical analogy is a class-2 lever, with one terminal of ''R''1 as the fulcrum, at ground potential. ''V''in is at a length ''R''1 from the fulcrum; ''V''out is at a length ''R''2 further along. When ''V''in ascends "above ground", the output ''V''out rises proportionately with the lever. The input impedance of the simplified non-inverting amplifier is high: : Z_ = (1+A_\textB)Z_ where ''Z''dif is the op-amp's input impedance to differential signals, and ''A''OL is the open-loop voltage gain of the op-amp (which varies with frequency), and ''B'' is the feedback factor (the fraction of the output signal that returns to the input). In the case of the ideal op-amp, with ''A''OL infinite and ''Z''dif infinite, the input impedance is also infinite. In this case, though, the circuit will be susceptible to input bias current drift because of the mismatch between the impedances driving the ''V''+ and ''V'' op-amp inputs. The feedback loop similarly decreases the output impedance: : Z_ = \frac where ''Z''out is the output impedance with feedback, and ''Z''OL is the open-loop output impedance.


Voltage follower (unity buffer amplifier)

Used as a buffer amplifier to eliminate loading effects (e.g., connecting a device with a high source impedance to a device with a low input impedance). : V_ = V_ \! :Z_ = \infty (realistically, the differential input impedance of the op-amp itself (1 MΩ to 1 TΩ), multiplied by the open-loop gain of the op-amp) Due to the strong (i.e.,
unity Unity may refer to: Buildings * Unity Building, Oregon, Illinois, US; a historic building * Unity Building (Chicago), Illinois, US; a skyscraper * Unity Buildings, Liverpool, UK; two buildings in England * Unity Chapel, Wyoming, Wisconsin, US; a ...
gain) feedback and certain non-ideal characteristics of real operational amplifiers, this feedback system is prone to have poor stability margins. Consequently, the system may be unstable when connected to sufficiently capacitive loads. In these cases, a lag compensation network (e.g., connecting the load to the voltage follower through a resistor) can be used to restore stability. The manufacturer data sheet for the operational amplifier may provide guidance for the selection of components in external compensation networks. Alternatively, another operational amplifier can be chosen that has more appropriate internal compensation. The input and output impedance are affected by the feedback loop in the same way as the non-inverting amplifier, with ''B''=1.


Summing amplifier

A summing amplifier sums several (weighted) voltages: : V_ = -R_ \left( \frac + \frac + \cdots + \frac \right) * When R_1 = R_2 = \cdots = R_n, and R_ independent : V_ = -\frac ( V_1 + V_2 + \cdots + V_n ) \! * When R_1 = R_2 = \cdots = R_n = R_ : V_ = -( V_1 + V_2 + \cdots + V_n ) \! * Output is inverted * Input impedance of the ''n''th input is Z_n = R_n (V_- is a virtual ground)


Instrumentation amplifier

Combines very high input impedance, high common-mode rejection, low
DC offset In signal processing, when describing a periodic function in the time domain, the DC bias, DC component, DC offset, or DC coefficient is the mean amplitude of the waveform. If the mean amplitude is zero, there is no DC bias. A waveform with n ...
, and other properties used in making very accurate, low-noise measurements * Is made by adding a non-inverting buffer to each input of the differential amplifier to increase the input impedance.


Oscillators


Wien bridge oscillator

Produces a very low distortion
sine wave A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the '' sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often in ...
. Uses negative temperature compensation in the form of a light bulb or diode.


Filters

Operational amplifiers can be used in construction of
active filter An active filter is a type of analog circuit implementing an electronic filter using active components, typically an amplifier. Amplifiers included in a filter design can be used to improve the cost, performance and predictability of a filter. ...
s, providing high-pass, low-pass, band-pass, reject and delay functions. The high input impedance and gain of an op-amp allow straightforward calculation of element values, allowing accurate implementation of any desired filter topology with little concern for the loading effects of stages in the filter or of subsequent stages. However, the frequencies at which active filters can be implemented is limited; when the behavior of the amplifiers departs significantly from the ideal behavior assumed in elementary design of the filters, filter performance is degraded.


Comparator

: An operational amplifier can, if necessary, be forced to act as a comparator. The smallest difference between the input voltages will be amplified enormously, causing the output to swing to nearly the supply voltage. However, it is usually better to use a dedicated comparator for this purpose, as its output has a higher slew rate and can reach either power supply rail. Some op-amps have clamping diodes on the input that prevent use as a comparator.


Integration and differentiation


Inverting integrator

The integrator is mostly used in analog computers, analog-to-digital converters and wave-shaping circuits. Integrates (and inverts) the input signal ''V''in(''t'') over a time interval ''t'', ''t''0 < ''t'' < ''t''1, yielding an output voltage at time ''t'' = ''t''1 of :V_\text(t_1) = V_\text(t_0) - \frac \int_^ V_\text(t) \,dt, where ''V''out(''t''0) represents the output voltage of the circuit at time ''t'' = ''t''0. This is the same as saying that the output voltage changes over time ''t''0 < ''t'' < ''t''1 by an amount proportional to the time integral of the input voltage: :-\frac \int_^ V_\text(t) \,dt. This circuit can be viewed as a low-pass
electronic filter Electronic filters are a type of signal processing filter in the form of electrical circuits. This article covers those filters consisting of lumped electronic components, as opposed to distributed-element filters. That is, using components ...
, one with a single pole at DC (i.e., where \omega = 0) and with gain. In a practical application one encounters a significant difficulty: unless the capacitor ''C'' is periodically discharged, the output voltage will eventually drift outside of the operational amplifier's operating range. This can be due to any combination of: * The input ''V''in has a non-zero DC component, * Input bias current is non-zero, * Input offset voltage is non-zero. A slightly more complex circuit can ameliorate the second two problems, and in some cases, the first as well. Here, the feedback resistor Rf provides a discharge path for capacitor Cf, while the series resistor at the non-inverting input Rn, when of the correct value, alleviates input bias current and common-mode problems. That value is the parallel resistance of Ri and Rf, or using the shorthand notation , , : :R_\text = \frac = R_\text , , R_\text. The relationship between input signal and output signal is now :V_\text(t_1) = V_\text(t_0) - \frac \int_^ V_\text(t) \,dt.


Inverting differentiator

Differentiates the (inverted) signal over time: :V_\text = -RC \frac, where V_\text and V_\text are functions of time. The transfer function of the inverting differentiator has a single
zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by Multiplication, multiplying digits to the left of 0 by th ...
in the origin (i.e., where
angular frequency In physics, angular frequency "''ω''" (also referred to by the terms angular speed, circular frequency, orbital frequency, radian frequency, and pulsatance) is a scalar measure of rotation rate. It refers to the angular displacement per unit ti ...
\omega = 0). The high-pass characteristics of a differentiating amplifier can lead to stability challenges when the circuit is used in an analog servo loop (e.g., in a PID controller with a significant derivative gain). In particular, as a root locus analysis would show, increasing feedback gain will drive a closed-loop pole toward marginal stability at the DC zero introduced by the differentiator.


Synthetic elements


Inductance gyrator

Simulates an
inductor An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a c ...
(i.e., provides
inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of th ...
without the use of a possibly costly inductor). The circuit exploits the fact that the current flowing through a capacitor behaves through time as the voltage across an inductor. The capacitor used in this circuit is geometrically smaller than the inductor it simulates, and its capacitance is less subject to changes in value due to environmental changes. Applications where this circuit may be superior to a physical inductor are simulating a variable inductance or simulating a very large inductance. This circuit is of limited use in applications relying on the back EMF property of an inductor, as this effect will be limited in a gyrator circuit to the voltage supplies of the op-amp.


Negative impedance converter (NIC)

Creates a
resistor A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active e ...
having a negative value for any signal generator. In this case, the ratio between the input voltage and the input current (thus the input resistance) is given by : R_\text = -R_3 \frac. In general, the components R_1, R_2, and R_3 need not be resistors; they can be any component that can be described with an impedance.


Non-linear


Precision rectifier

The voltage drop ''V''F across the forward-biased diode in the circuit of a passive rectifier is undesired. In this active version, the problem is solved by connecting the diode in the negative feedback loop. The op-amp compares the output voltage across the load with the input voltage and increases its own output voltage with the value of ''V''F. As a result, the voltage drop ''V''F is compensated, and the circuit behaves very nearly as an ideal (''super'')
diode A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diod ...
with ''V''F = 0 V. The circuit has speed limitations at high frequency because of the slow negative feedback and due to the low slew rate of many non-ideal op-amps.


Logarithmic output

The relationship between the input voltage and the output voltage is given by : V_\text = -V_\text \ln \left(\frac\right), where is the ''saturation current'', and is the ''thermal voltage''. If the operational amplifier is considered ideal, the inverting input pin is virtually grounded, so the current flowing into the resistor from the source (and thus through the diode to the output, since the op-amp inputs draw no current) is : \frac = I_\text = I_\text, where is the current through the diode. As known, the relationship between the current and the voltage for a
diode A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diod ...
is : I_\text = I_\text \left(e^ - 1\right). This, when the voltage is greater than zero, can be approximated by : I_\text \simeq I_\text e^. Putting these two formulae together and considering that the output voltage is the negative of the voltage across the diode (), the relationship is proven. This implementation does not consider temperature stability and other non-ideal effects.


Exponential output

The relationship between the input voltage V_\text and the output voltage V_\text is given by : V_\text = -R I_\text e^, where I_\text is the saturation current, and V_\text is the
thermal voltage The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constant, ...
. Considering the operational amplifier ideal, the negative pin is virtually grounded, so the current through the diode is given by : I_\text = I_\text \left(e^ - 1\right). When the voltage is greater than zero, it can be approximated by : I_\text \simeq I_\text e^. The output voltage is given by : V_\text = -R I_\text.


Other applications

* audio and video preamplifiers and buffers * filters * voltage regulator and
current regulator A current source is an electronic circuit that delivers or absorbs an electric current which is independent of the voltage across it. A current source is the dual of a voltage source. The term ''current sink'' is sometimes used for sources fed ...
* analog-to-digital converter * digital-to-analog converter * voltage clamp * oscillators and waveform generators * Analog computer * Capacitance multiplier * Charge amplifier


See also

* Current-feedback operational amplifier *
Frequency compensation In electronics engineering, frequency compensation is a technique used in amplifiers, and especially in amplifiers employing negative feedback. It usually has two primary goals: To avoid the unintentional creation of positive feedback, which will ...
* Operational amplifier *
Operational transconductance amplifier The operational transconductance amplifier (OTA) is an amplifier whose differential input voltage produces an output current. Thus, it is a voltage controlled current source (VCCS). There is usually an additional input for a current to control t ...
* Transimpedance amplifier


Notes


References


Further reading


External links

*   *   *   –
Analog Devices Analog Devices, Inc. (ADI), also known simply as Analog, is an American multinational semiconductor company specializing in data conversion, signal processing and power management technology, headquartered in Wilmington, Massachusetts. The ...
Application note A datasheet, data sheet, or spec sheet is a document that summarizes the performance and other characteristics of a product, machine, component (e.g., an electronic component), material, subsystem (e.g., a power supply), or software in suff ...
*   *   –
Texas Instruments Texas Instruments Incorporated (TI) is an American technology company headquartered in Dallas, Texas, that designs and manufactures semiconductors and various integrated circuits, which it sells to electronics designers and manufacturers globa ...
Application note A datasheet, data sheet, or spec sheet is a document that summarizes the performance and other characteristics of a product, machine, component (e.g., an electronic component), material, subsystem (e.g., a power supply), or software in suff ...

Low Side Current Sensing Using Operational Amplifiers
*  

* ttp://www.philbrickarchive.org/1964-1_v12_no1_the_lightning_empiricist.htm Impedance and admittance transformations using operational amplifiersby D. H. Sheingold
''High Speed Amplifier Techniques ''
very practical and readable{{spaced ndashwith photos and real waveforms
Single supply op-amp circuit collection

Properly terminating an unused op-amp
Linear integrated circuits