On physical lines of force
   HOME

TheInfoList



OR:

"On Physical Lines of Force" is a four-part paper written by
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
published in 1861. In it, Maxwell derived the equations of electromagnetism in conjunction with a "sea" of "
molecular A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
vortices" which he used to model Faraday's lines of force. Maxwell had studied and commented on the field of electricity and magnetism as early as 1855/6 when "On Faraday's Lines of Force" was read to the
Cambridge Philosophical Society The Cambridge Philosophical Society (CPS) is a scientific society at the University of Cambridge. It was founded in 1819. The name derives from the medieval use of the word philosophy to denote any research undertaken outside the fields of l ...
. Maxwell made an analogy between the density of this medium and the magnetic permeability, as well as an analogy between the transverse elasticity and the dielectric constant, and using the results of a prior experiment by
Wilhelm Eduard Weber Wilhelm Eduard Weber (; ; 24 October 1804 – 23 June 1891) was a German physicist and, together with Carl Friedrich Gauss, inventor of the first electromagnetic telegraph. Biography of Wilhelm Early years Weber was born in Schlossstrasse i ...
and
Rudolf Kohlrausch Rudolf Hermann Arndt Kohlrausch (November 6, 1809 in Göttingen – March 8, 1858 in Erlangen) was a German physicist. Biography He was a native of Göttingen, the son of the Royal Hanovarian director general of schools Friedrich Kohlrausch. He ...
performed in 1856, he established a connection between the speed of light and the speed of propagation of waves in this medium. The paper ushered in a new era of classical electrodynamics and catalyzed further progress in the mathematical field of
vector calculus Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space \mathbb^3. The term "vector calculus" is sometimes used as a synonym for the broader subjec ...
. Because of this, it is considered one of the most historically significant publications in physics and science in general, comparable with Einstein's ''
Annus Mirabilis papers The ''annus mirabilis'' papers (from Latin '' annus mīrābilis'', "miracle year") are the four papers that Albert Einstein published in '' Annalen der Physik'' (''Annals of Physics''), a scientific journal, in 1905. These four papers were major ...
'' and Newton's ''
Principia Mathematica The ''Principia Mathematica'' (often abbreviated ''PM'') is a three-volume work on the foundations of mathematics written by mathematician–philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. ...
''.


Motivations

In 1856,
Wilhelm Eduard Weber Wilhelm Eduard Weber (; ; 24 October 1804 – 23 June 1891) was a German physicist and, together with Carl Friedrich Gauss, inventor of the first electromagnetic telegraph. Biography of Wilhelm Early years Weber was born in Schlossstrasse i ...
and
Rudolf Kohlrausch Rudolf Hermann Arndt Kohlrausch (November 6, 1809 in Göttingen – March 8, 1858 in Erlangen) was a German physicist. Biography He was a native of Göttingen, the son of the Royal Hanovarian director general of schools Friedrich Kohlrausch. He ...
performed an experiment with a
Leyden jar A Leyden jar (or Leiden jar, or archaically, sometimes Kleistian jar) is an electrical component that stores a high-voltage electric charge (from an external source) between electrical conductors on the inside and outside of a glass jar. It ty ...
and established the ratio of
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons res ...
as measured statically to the same electric charge as measured electrodynamically. Maxwell used this ratio in
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, Theology, theologian, and author (described in his time as a "natural philosophy, natural philosopher"), widely ...
's equation for the
speed of sound The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At , the speed of sound in air is about , or one kilometre in or one mile in . It depends strongly on temperature as we ...
, as applied using the density and transverse elasticity of his sea of molecular vortices. He obtained a value which was very close to the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
, as recently measured directly by Hippolyte Fizeau. Maxwell then wrote
"we can scarcely avoid the inference that light consists in the transverse undulations of the same medium which is the cause of electric and magnetic phenomena"
It was also in this 1861 paper that Maxwell first introduced the
displacement current In electromagnetism, displacement current density is the quantity appearing in Maxwell's equations that is defined in terms of the rate of change of , the electric displacement field. Displacement current density has the same units as electric ...
term which is now included in Ampère's circuital law. But it wasn't until his next paper in 1865, " A Dynamical Theory of the Electromagnetic Field" that Maxwell used this displacement current term to derive the
electromagnetic wave equation The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous fo ...
. :\mathbf\times \mathbf = \mu_0\mathbf + \underbrace_\mathrm


Impact

The four modern
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits ...
, as laid down in a publication by
Oliver Heaviside Oliver Heaviside FRS (; 18 May 1850 – 3 February 1925) was an English self-taught mathematician and physicist who invented a new technique for solving differential equations (equivalent to the Laplace transform), independently develope ...
in 1884, had all appeared in Maxwell's 1861 paper. Heaviside however presented these equations in modern vector format using the nabla operator (∇) devised by
William Rowan Hamilton Sir William Rowan Hamilton Doctor of Law, LL.D, Doctor of Civil Law, DCL, Royal Irish Academy, MRIA, Royal Astronomical Society#Fellow, FRAS (3/4 August 1805 – 2 September 1865) was an Irish mathematician, astronomer, and physicist. He was the ...
in 1837, Of Maxwell's work,
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
wrote:
"Imagine axwell'sfeelings when the differential equations he had formulated proved to him that electromagnetic fields spread in the form of polarised waves, and at the speed of light! To few men in the world has such an experience been vouchsafed... it took physicists some decades to grasp the full significance of Maxwell's discovery, so bold was the leap that his genius forced upon the conceptions of his fellow-workers."
Other physicists were equally impressed with Maxwell's work, such as Richard Feynman who commented:
"From a long view of the history of the world—seen from, say, ten thousand years from now—there can be little doubt that the most significant event of the 19th century will be judged as Maxwell's discovery of the laws of electromagnetism. The American Civil War will pale into provincial insignificance in comparison with this important scientific event of the same decade."
Charles Coulston Gillispie states that the paper introduced the word " field" to the world of physics, but Faraday first coined the term in 1849.


See also

*''
A Treatise on Electricity and Magnetism ''A Treatise on Electricity and Magnetism'' is a two-volume treatise on electromagnetism written by James Clerk Maxwell in 1873. Maxwell was revising the ''Treatise'' for a second edition when he died in 1879. The revision was completed by Wi ...
'' * Flux tube


References


Further reading

* * * {{DEFAULTSORT:On Physical Lines Of Force Physics papers Historical physics publications 1861 in science 1862 in science Works by James Clerk Maxwell Works originally published in Philosophical Magazine