Ocean deoxygenation
   HOME

TheInfoList



OR:

Ocean deoxygenation is the reduction of the oxygen content of the global
ocean The ocean (also the sea or the world ocean) is the body of salt water that covers approximately 70.8% of the surface of Earth and contains 97% of Earth's water. An ocean can also refer to any of the large bodies of water into which the wor ...
s and coastal zones due to human activities as a consequence of anthropogenic emissions of carbon dioxide and
eutrophication Eutrophication is the process by which an entire body of water, or parts of it, becomes progressively enriched with minerals and nutrients, particularly nitrogen and phosphorus. It has also been defined as "nutrient-induced increase in phyt ...
-driven excess production. It is manifest in the increasing number of coastal and estuarine hypoxic areas, or dead zones, and the expansion of oxygen minimum zones (OMZs) in the world's oceans. The decrease in oxygen content of the oceans has been fairly rapid and poses a threat to all
aerobic Aerobic means "requiring air," in which "air" usually means oxygen. Aerobic may also refer to * Aerobic exercise, prolonged exercise of moderate intensity * Aerobics, a form of aerobic exercise * Aerobic respiration, the aerobic process of cel ...
marine life Marine life, sea life, or ocean life is the plants, animals and other organisms that live in the salt water of seas or oceans, or the brackish water of coastal estuaries. At a fundamental level, marine life affects the nature of the planet. ...
, as well as to people who depend on marine life for nutrition or livelihood.Oceans suffocating as huge dead zones quadruple since 1950, scientists warn
The Guardian, 2018
Ocean's Oxygen Starts Running Low
/ref>Finding forced trends in oceanic oxygen
/ref>How global warming is causing ocean oxygen levels to fall
/ref> Oceanographers and others have discussed what phrase best describes the phenomenon to non-specialists. Among the options considered have been ocean suffocation (which was used in a news report from May 2008), "ocean oxygen deprivation", "decline in ocean oxygen", "marine deoxygenation", "ocean oxygen depletion" and "ocean hypoxia". The term “Ocean Deoxygenation” has been used increasingly by international scientific bodies because it captures the decreasing trend of the world ocean's oxygen inventory.


Overview

Oxygen is input into the ocean at the surface, through the processes of
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
by
phytoplankton Phytoplankton () are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems. The name comes from the Greek words (), meaning 'plant', and (), meaning 'wanderer' or 'drifter'. ...
and mixing with the atmosphere. However, organisms, both microbial and multicellular, use oxygen in respiration throughout the entire depth of the ocean, so when the supply of oxygen from the surface is less than the utilization of oxygen in deep water, oxygen loss occurs. This phenomenon is natural, but is exacerbated with increased stratification and/or
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
. Stratification occurs when water masses with different properties, primarily temperature and
salinity Salinity () is the saltiness or amount of salt (chemistry), salt dissolved in a body of water, called saline water (see also soil salinity). It is usually measured in g/L or g/kg (grams of salt per liter/kilogram of water; the latter is dimensio ...
, are layered, with lower density water on top of higher density water. The larger the differences in the properties between layers, the less mixing occurs between the layers. Stratification is increased when the temperature of the surface ocean or the amount of freshwater input into the ocean from rivers and ice melt increases, enhancing ocean deoxygenation by limiting supply. Another factor that can limit supply is the
solubility In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
of oxygen. As temperature and salinity increase, the solubility of oxygen decreases, meaning that less oxygen can be dissolved into water as it warms and becomes more salty. Ocean deoxygenation is an additional stressor on marine life. Ocean deoxygenation results in the expansion of oxygen minimum zones in the oceans as a consequence of burning fossil fuels. Along with this ocean deoxygenation is caused by an imbalance of sources and sinks of oxygen in dissolved water.Laffoley, D. & Baxter, J.M. (eds.) (2019)
Ocean deoxygenation: Everyone’s problem - Causes, impacts, consequences and solutions
IUCN, Switzerland.
Burning fossil fuels consumes oxygen, but because of the large atmospheric oxygen inventory, the associated relative decline of atmospheric oxygen (0.001% per year) is about two orders of magnitude smaller than the current rate of ocean deoxygenation. The change has been fairly rapid and poses a threat to fish and other types of marine life, as well as to people who depend on marine life for nutrition or livelihood. Ocean deoxygenation poses implications for ocean productivity, nutrient cycling, carbon cycling, and
marine habitats Marine habitats are habitats that support marine life. Marine life depends in some way on the saltwater that is in the sea (the term ''marine'' comes from the Latin ''mare'', meaning sea or ocean). A habitat is an ecological or environmental ...
. Total ocean oxygen content has decreased by 1-2% since 1960.
Ocean warming In oceanography and climatology, ocean heat content (OHC) is a term for the energy absorbed by the ocean, where it is stored for indefinite time periods as internal energy or enthalpy. The rise in OHC accounts for over 90% of Earth’s excess the ...
exacerbates ocean deoxygenation and further stresses marine organisms, limiting nutrient availability by increasing
ocean stratification Stratification is the separation of water in layers. Two main types of stratification of water are uniform and layered stratification. Layered stratification occurs in all ocean basins. Stratified layers act as a barrier to the mixing of water, whi ...
through density and solubility effects while at the same time increasing metabolic demand. The rising temperatures in the oceans cause a reduced solubility of oxygen in the water, which can explain about 50% of oxygen loss in the upper level of the ocean (>1000 m). According to the IPCC 2019
Special Report on the Ocean and Cryosphere in a Changing Climate The United Nations' Intergovernmental Panel on Climate Change's (IPCC) Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) is a report about the effects of climate change on the world's seas, sea ice, icecaps and glaciers. ...
, the viability of species is being disrupted throughout the ocean food web due to changes in
ocean chemistry Marine chemistry, also known as ocean chemistry or chemical oceanography, is influenced by plate tectonics and seafloor spreading, turbidity currents, sediments, pH levels, atmospheric constituents, metamorphic activity, and ecology. The fie ...
. As the ocean warms, mixing between water layers decreases, resulting in less oxygen and nutrients being available for
marine life Marine life, sea life, or ocean life is the plants, animals and other organisms that live in the salt water of seas or oceans, or the brackish water of coastal estuaries. At a fundamental level, marine life affects the nature of the planet. ...
. Warmer ocean water holds less oxygen and is more buoyant than cooler water. This leads to reduced mixing of oxygenated water near the surface with deeper water, which naturally contains less oxygen. Warmer water also raises oxygen demand from living organisms; as a result, less oxygen is available for marine life. Melting of gas hydrates in bottom layers of water may result in the release of more methane from sediments and subsequent consumption of oxygen by
aerobic respiration Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor such as oxygen to produce large amounts of energy, to drive the bulk production of ATP. Cellular respiration may be des ...
of methane to
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
. Another effect of climate change on oceans that causes ocean deoxygenation is circulation changes. As the ocean warms from the surface, stratification is expected to increase, which shows a tendency for slowing down ocean circulation, which then increases ocean deoxygenation. Coastal regions, such as the
Baltic Sea The Baltic Sea is an arm of the Atlantic Ocean that is enclosed by Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland, Russia, Sweden and the North and Central European Plain. The sea stretches from 53°N to 66°N latitude and from ...
, the northern
Gulf of Mexico The Gulf of Mexico ( es, Golfo de México) is an ocean basin and a marginal sea of the Atlantic Ocean, largely surrounded by the North American continent. It is bounded on the northeast, north and northwest by the Gulf Coast of the United ...
, and the
Chesapeake Bay The Chesapeake Bay ( ) is the largest estuary in the United States. The Bay is located in the Mid-Atlantic region and is primarily separated from the Atlantic Ocean by the Delmarva Peninsula (including the parts: the Eastern Shore of Maryland / ...
, as well as large enclosed water bodies like
Lake Erie Lake Erie ( "eerie") is the fourth largest lake by surface area of the five Great Lakes in North America and the eleventh-largest globally. It is the southernmost, shallowest, and smallest by volume of the Great Lakes and therefore also ha ...
, have been affected by deoxygenation due to eutrophication. Excess nutrients are input into these systems by rivers, ultimately from urban and agricultural runoff and exacerbated by deforestation. These nutrients lead to high productivity that produces organic material that sinks to the bottom and is respired. The respiration of that organic material uses up the oxygen and causes hypoxia or anoxia. Oceanic oxygen minimum zones (OMZ) generally occur in the middle depths of the ocean, from 100 – 1000 m deep, and are natural phenomena that result from respiration of sinking organic material produced in the surface ocean. However, as the oxygen content of the ocean decreases, oxygen minimum zones are expanding both vertically and horizontally. As low oxygen zones expand vertically nearer to the surface, they can affect
coastal upwelling Upwelling is an oceanographic phenomenon that involves wind-driven motion of dense, cooler, and usually nutrient-rich water from deep water towards the ocean surface. It replaces the warmer and usually nutrient-depleted surface water. The nutr ...
systems such as the California Current on the coast of
Oregon Oregon () is a U.S. state, state in the Pacific Northwest region of the Western United States. The Columbia River delineates much of Oregon's northern boundary with Washington (state), Washington, while the Snake River delineates much of it ...
(US). These upwelling systems are driven by seasonal winds that force the surface waters near the coast to move offshore, which pulls deeper water up along the
continental shelf A continental shelf is a portion of a continent that is submerged under an area of relatively shallow water, known as a shelf sea. Much of these shelves were exposed by drops in sea level during glacial periods. The shelf surrounding an island ...
. As the depth of the deoxygenated deeper water becomes shallower, more of the deoxygenated water can reach the continental shelf, causing coastal hypoxia and fish kills. Impacts of massive fish kills on the
aquaculture Aquaculture (less commonly spelled aquiculture), also known as aquafarming, is the controlled cultivation ("farming") of aquatic organisms such as fish, crustaceans, mollusks, algae and other organisms of value such as aquatic plants (e.g. lot ...
industry are projected to be profound. Overall, local Harmful Algal Blooms (HAB), regional dead zones, and the oceanic phenomena of oxygen minimum zones are contributing to ocean-wide deoxygenation.


Global extent

Ocean deoxygenation has led to suboxic, hypoxic, and anoxic conditions in both coastal waters and the open ocean. Since 1950, more than 500 sites in coastal waters have reported oxygen concentrations below 2 mg liter−1, which is generally accepted as the threshold of hypoxic conditions. Several areas of the open ocean have naturally low oxygen concentration due to biological oxygen consumption that cannot be supported by the rate of oxygen input to the area from physical transport, air-sea mixing, or photosynthesis. These areas are called oxygen minimum zones (OMZs), and there is a wide variety of open ocean systems that experience these naturally low oxygen conditions, such as upwelling zones, deep basins of enclosed seas, and the cores of some mode-water eddies. Oxygen-poor waters of coastal and open ocean systems have largely been studied in isolation of each other, with researchers focusing on eutrophication-induced hypoxia in coastal waters and naturally occurring (without apparent direct input of anthropogenic nutrients) open ocean OMZs. However, coastal and open ocean oxygen-poor waters are highly interconnected and therefore both have seen an increase in the intensity, spatial extent, and temporal extent of deoxygenated conditions. The spatial extent of deoxygenated conditions can vary widely. In coastal waters, regions with deoxygenated conditions can extend from less than one to many thousands of square kilometers. Open ocean OMZs exist in all ocean basins and have similar variation in spatial extent; an estimated 8% of global ocean volume is within OMZs. The largest OMZ is in the eastern tropical north Pacific and comprises 41% of this global volume, and the smallest OMZ is found in the eastern tropical North Atlantic and makes up only 5% of the global OMZ volume. The vertical extent of low oxygen conditions is also variable, and areas of persistent low oxygen have annual variation in the upper and lower limits of oxygen-poor waters. Typically, OMZs are expected to occur at depths of about 200 to 1,000 meters. The upper limit of OMZs is characterized by a strong and rapid gradient in oxygenation, called the oxycline. The depth of the oxycline varies between OMZs, and is mainly affected by physical processes such as air-sea fluxes and vertical movement in the thermocline depth. The lower limit of OMZs is associated with the reduction in biological oxygen consumption, as the majority of organic matter is consumed and respired in the top 1,000 m of the vertical water column. Shallower coastal systems may see oxygen-poor waters extend to bottom waters, leading to negative effects on benthic communities. The temporal duration of oxygen-poor conditions can vary on seasonal, annual, or multi-decadal scales. Hypoxic conditions in coastal systems like the Gulf of Mexico are usually tied to discharges of rivers, thermohaline stratification of the water column, wind-driven forcing, and continental shelf circulation patterns. As such, there are seasonal and annual patterns in the initiation, persistence, and break down of intensely hypoxic conditions. Oxygen concentrations in open oceans and the margins between coastal areas and the open ocean may see variation in intensity, spatial extent, and temporal extent from multi-decadal oscillations in climatic conditions. Measurement of dissolved oxygen in coastal and open ocean waters for the past 50 years has revealed a marked decline in oxygen content. This decline is associated with expanding spatial extent, expanding vertical extent, and prolonged duration of oxygen-poor conditions in all regions of the global oceans. Examinations of the spatial extent of OMZs in the past through paleoceanographical methods clearly shows that the spatial extent of OMZs has expanded through time, and this expansion is coupled to ocean warming and reduced ventilation of thermocline waters. Many persistent OMZs have increased in thickness over the last five decades through both shoaling of the upper limit and downward expansion of the lower limit. Coastal regions have also seen expanded spatial extent and temporal duration due to increased anthropogenic nutrient input and changes in regional circulation. Areas that have not previously experienced low oxygen conditions, like the coastal shelf of Oregon on the West coast of the United States, have recently and abruptly developed seasonal hypoxia. The global decrease in oceanic oxygen content is statistically significant and emerging beyond the envelope of natural fluctuations. This trend of oxygen loss is accelerating, with widespread and obvious losses occurring after the 1980s. The rate and total content of oxygen loss varies by region, with the North Pacific emerging as a particular hotspot of deoxygenation due to the increased amount of time since its deep waters were last ventilated (see thermohaline circulation) and related high apparent oxygen utilization (AOU). Estimates of total oxygen loss in the global ocean range from 119 to 680 T mol decade−1 since the 1950s. These estimates represent 2% of the global ocean oxygen inventory. Modeling efforts show that global ocean oxygen loss rates will continue to accelerate up to 125 T mol year−1 by 2100 due to persistent warming, a reduction in ventilation of deeper waters, increased biological oxygen demand, and the associated expansion and shoaling of OMZs.


Climate change

Most of the excess heat from CO2 and other
greenhouse gas emissions Greenhouse gas emissions from human activities strengthen the greenhouse effect, contributing to climate change. Most is carbon dioxide from burning fossil fuels: coal, oil, and natural gas. The largest emitters include coal in China and ...
is absorbed by the oceans. Warmer oceans cause deoxygenation both because oxygen is less soluble in warmer water, and through temperature driven stratification of the ocean which inhibits the production of oxygen from
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
. The ocean surface stratifies as the atmosphere and ocean warms causing ice melt and glacial runoff. This results in a less salty and therefore a less dense layer that floats on top. Also the warmer waters themselves are less dense. This stratification inhibits the upwelling of nutrients (the ocean constantly recycles its nutrients) into the upper layer of the ocean. This is where the majority of oceanic photosynthesis (such as by phytoplankton) occurs.Cermeño, Pedro, et al. "The role of nutricline depth in regulating the ocean carbon cycle." Proceedings of the National Academy of Sciences 105.51 (2008): 20344-20349 This decrease in nutrient supply is likely to decrease rates of photosynthesis in the surface ocean, which is responsible for approximately half of the oxygen produced globally. Increased stratification can also decrease the supply of oxygen to the interior of the ocean. Warmer waters also increase the metabolism of marine organisms, leading to increased respiration rates. In the surface ocean, increased respiration will likely lead to lower net oxygen production, and thus less oxygen transferred to the atmosphere. In the interior ocean, the combination of increased respiration and decreased oxygen supply from surface waters can draw oxygen down to hypoxic or anoxic levels. Not only are low levels of oxygen lethal to fish and other upper trophic level species, they can change the microbially mediated cycling of globally important elements (see microbiology of oxygen minimum zones such as nitrogen; nitrate replaces oxygen as the primary microbial electron acceptor at very low oxygen concentrations. All this, increased demand on herbivores, decreased nutrient supply, decreased dissolved oxygen, etc., result in food web mismatches.


Implications

Ocean deoxygenation poses implications for ocean productivity, nutrient cycling, carbon cycling, and
marine habitats Marine habitats are habitats that support marine life. Marine life depends in some way on the saltwater that is in the sea (the term ''marine'' comes from the Latin ''mare'', meaning sea or ocean). A habitat is an ecological or environmental ...
. Studies have shown that oceans have already lost 1-2% of their oxygen since the middle of the 20th century, and model simulations predict a decline of up to 7% in the global ocean O2 content over the next hundred years. The decline of oxygen is projected to continue for a thousand years or more.


Effects on bioavailability

Bioavailability In pharmacology, bioavailability is a subcategory of absorption and is the fraction (%) of an administered drug that reaches the systemic circulation. By definition, when a medication is administered intravenously, its bioavailability is 100%. Ho ...
is a measure of how readily a substance in the environment (generally a molecular substance) can be obtained by an organism. For the aquatic sciences, bioavailability of oxygen is particularly important since it describes the amount of oxygen (supply) relative to the requirements (demand) of a specific organism whereas concentrations describe just the amount of oxygen in the water.


Oxygen supply

The supply of oxygen available to aquatic organisms is determined by oxygen solubility in water. Oxygen is less soluble in warm, salty water and more soluble in cold, fresh water. The amount of oxygen dissolved in water can be measured as a concentration, percent saturation, or
partial pressure In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. The total pressure of an ideal g ...
. While all these measures tell us how much oxygen is present, partial pressure is the most accurate measure when considering aquatic organisms since the partial pressure of a gas determines how readily it will diffuse across a membrane. If the partial pressure of oxygen is higher on the external, water side of a gill membrane than on the internal, bloodstream side, oxygen will more readily diffuse across the membrane and into the fish.


Oxygen demand

An organism's demand for oxygen is dependent on its
metabolic rate Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cell ...
. Metabolic rates can be affected by external factors such as the temperature of the water, and internal factors such as the species, life stage, size, and activity level of the organism. The body temperature of ectotherms (such as fishes and
invertebrates Invertebrates are a paraphyletic group of animals that neither possess nor develop a vertebral column (commonly known as a ''backbone'' or ''spine''), derived from the notochord. This is a grouping including all animals apart from the chordat ...
) fluctuates with the temperature of the water. As the external temperature increases, ectotherm metabolisms increase as well, increasing their demand for oxygen. Different species have different basal metabolic rates and therefore different oxygen demands. Life stages of organisms also have different metabolic demands. In general, younger stages tend to grow in size and advance in developmental complexity quickly. As the organism reaches maturity, metabolic demands switch from growth and development to maintenance, which requires far fewer resources. Smaller organisms have higher metabolisms per unit of mass, so smaller organisms will require more oxygen per unit mass, while larger organisms generally require more total oxygen. Higher activity levels also require more oxygen. This is why bioavailability is important in deoxygenated systems: an oxygen quantity which is dangerously low for one species might be more than enough for another species.


Indices and calculations

Several indices to measure bioavailability have been suggested: Respiration Index, Oxygen Supply Index, and the Metabolic Index. The Respiration Index describes oxygen availability based on the free energy available in the reactants and
products Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
of the
stoichiometric Stoichiometry refers to the relationship between the quantities of reactants and products before, during, and following chemical reactions. Stoichiometry is founded on the law of conservation of mass where the total mass of the reactants equ ...
equation for respiration. However, organisms have ways of altering their oxygen intake and carbon dioxide release, so the strict stoichiometric equation is not necessarily accurate. The Oxygen Supply Index accounts for oxygen solubility and partial pressure, along with the Q10 of the organism, but does not account for behavioral or physiological changes in organisms to compensate for reduced oxygen availability. The Metabolic Index accounts for the supply of oxygen in terms of solubility, partial pressure, and diffusivity of oxygen in water, and the organism's metabolic rate. The metabolic index is generally viewed as a closer approximation of oxygen bioavailability than the other indices. There are two thresholds of oxygen required by organisms: * ''Pcrit'' (critical partial pressure)- the oxygen level below which an organism cannot support a normal
respiration Respiration may refer to: Biology * Cellular respiration, the process in which nutrients are converted into useful energy in a cell ** Anaerobic respiration, cellular respiration without oxygen ** Maintenance respiration, the amount of cellul ...
rate * ''Pleth'' (lethal partial pressure)- the oxygen level below which an organism cannot support the minimum respiration rate necessary for survival. Since bioavailability is specific to each organism and temperature, calculation of these thresholds is done experimentally by measuring activity and respiration rates under different temperature and oxygen conditions, or by collecting data from separate studies.


Impacts of climate change

In the context of ocean deoxygenation, species experience the impacts of low oxygen at different levels and rates of oxygen loss, as driven by their thresholds of oxygen tolerance. Generally, we can expect mobile species to move away from areas of lethally low oxygen, but they also experience non-lethal effects of exposure to low oxygen. Further examples are included in the body of this page. Bioavailability will continue to change in a changing climate. Warming water temperatures mean low solubility of oxygen and increasing deoxygenation, while also increasing the oxygen demands of ectothermic organisms by driving their metabolic rates higher. This positive feedback loop compounds the effects of reduced oxygen concentrations.


Effects on marine taxa


Microbes

In OMZs oxygen concentration drops to levels <10 nM at the base of the oxycline and can remain anoxic for over 700 m depth. This lack of oxygen can be reinforced or increased due to physical processes changing oxygen supply such as eddy-driven advection, sluggish ventilation, increases in ocean stratification, and increases in ocean temperature which reduces oxygen solubility. At a microscopic scale the processes causing ocean deoxygenation rely on microbial aerobic respiration. Aerobic respiration is a metabolic process that microorganisms like bacteria or archaea use to obtain energy by degrading organic matter, consuming oxygen, producing CO2 and obtaining energy in the form of ATP. In the ocean surface photosynthetic microorganisms called phytoplankton use solar energy and CO2 to build organic molecules (organic matter) releasing oxygen in the process. A large fraction of the organic matter from photosynthesis becomes dissolved organic matter (DOM) that is consumed by bacteria during aerobic respiration in sunlit waters. Another fraction of organic matter sinks to the deep ocean forming aggregates called marine snow. These sinking aggregates are consumed via degradation of organic matter and respiration at depth. At depths in the ocean where no light can reach, aerobic respiration is the dominant process. When the oxygen in a parcel of water is consumed, the oxygen cannot be replaced without the water reaching the surface ocean. When oxygen concentrations drop to below <10 nM, microbial processes that are normally inhibit by oxygen can take place like
denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denit ...
and
anammox Anammox, an abbreviation for anaerobic ammonium oxidation, is a globally important microbial process of the nitrogen cycle that takes place in many natural environments. The bacteria mediating this process were identified in 1999, and were a gre ...
. Both processes extract elemental nitrogen from nitrogen compounds and that elemental nitrogen which does not stay in solution escapes as a gas, resulting in a net loss of nitrogen from the ocean.


Zooplankton

Decreased oxygen availability results in decreases in many zooplankton species’ egg production, food intake, respiration, and metabolic rates. Temperature and salinity in areas of decreased oxygen concentrations also affect oxygen availability. Higher temperatures and salinity lower oxygen solubility decrease the partial pressure of oxygen. This decreased partial pressure increases organisms’ respiration rates, causing the oxygen demand of the organism to increase. In addition to affecting their vital functions, zooplankton alter their distribution in response to hypoxic or anoxic zones. Many species actively avoid low oxygen zones, while others take advantage of their predators’ low tolerance for hypoxia and use these areas as a refuge. Zooplankton that exhibit daily vertical migrations to avoid predation and low oxygen conditions also excrete ammonium near the oxycline and contribute to increased anaerobic ammonium oxidation (anammox;, which produces N2 gas. As hypoxic regions expand vertically and horizontally, the habitable ranges for phytoplankton, zooplankton, and
nekton Nekton or necton (from the ) refers to the actively swimming aquatic organisms in a body of water. The term was proposed by German biologist Ernst Haeckel to differentiate between the active swimmers in a body of water, and the passive organisms t ...
increasingly overlap, increasing their susceptibility to predation and human exploitation. The relationship between zooplankton and low oxygen zones is complex and varies by species and life stage. Some gelatinous zooplankton reduce their growth rates when exposed to hypoxia while others utilize this habitat to forage on high prey concentrations with their growth rates unaffected. The ability of some gelatinous zooplankton to tolerate hypoxia may be attributed to the ability to store oxygen in intragel regions. The movements of zooplankton as a result of ocean deoxygenation can affect fisheries, global nitrogen cycling, and trophic relationships. These changes have the potential to have large economic and environmental consequences through overfishing or collapsed food webs.


Fish

A fish's behavior in response to ocean deoxygenation is based upon their tolerance to oxygen poor conditions. Species with low anoxic tolerance tend to undergo habitat compression in response to the expansion of OMZs. Low tolerance fish start to habitate near the surface of the water column and ventilate at the top layer of the water where it contains higher levels of dissolved oxygen, a behavior called aquatic surface respiration. Biological responses to habitat compression can be varied. Some species of billfish, predatory pelagic predators such as sailfish and marlin, that have undergone habitat compression actually have increased growth since their prey, smaller pelagic fish, experienced the same habitat compression, resulting in increased prey vulnerability to billfishes. Fish with tolerance to anoxic conditions, such as jumbo squid and lanternfish, can remain active in anoxic environments at a reduced level, which can improve their survival by increasing avoidance of anoxia intolerant predators and have increased access to resources that their anoxia intolerant competitors cannot.


Effects on coastal habitats


Coral reefs

There has been a severe increase in mass mortality events associated with low oxygen causing mass hypoxia with the majority having been in the last 2 decades. The rise in water temperature leads to an increase in oxygen demand and the increase for ocean deoxygenation which causes these large coral reef dead zones. For many
coral reef A coral reef is an underwater ecosystem characterized by reef-building corals. Reefs are formed of Colony (biology), colonies of coral polyp (zoology), polyps held together by calcium carbonate. Most coral reefs are built from stony corals, wh ...
s, the response to this hypoxia is very dependent on the magnitude and duration of the deoxygenation. The symptoms can be anywhere from reduced
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
and
calcification Calcification is the accumulation of calcium salts in a body tissue. It normally occurs in the formation of bone, but calcium can be deposited abnormally in soft tissue,Miller, J. D. Cardiovascular calcification: Orbicular origins. ''Nature M ...
to
bleaching Bleach is the generic name for any chemical product that is used industrially or domestically to remove color (whitening) from a fabric or fiber or to clean or to remove stains in a process called bleaching. It often refers specifically, to ...
. Hypoxia can have indirect effects like the abundance of algae and spread of coral diseases in the
ecosystem An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syst ...
s. While coral is unable to handle such low levels of oxygen, algae is quite tolerant. Because of this, in interaction zones between algae and coral, increased hypoxia will cause more coral death and higher spread of algae. The increase mass coral dead zones is reinforced by the spread of coral diseases. Coral diseases can spread easily when there are high concentrations of
sulfide Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. ''Sulfide'' also refers to chemical compounds la ...
and hypoxic conditions. Due to the loop of hypoxia and coral reef mortality, the fish and other marine life that inhabit the coral reefs have a change in behavioral in response to the hypoxia. Some fish will go upwards to find more oxygenated water, and some enter a phase of metabolic and ventilatory depression. Invertebrates migrate out of their homes to the surface of
substratum In linguistics, a stratum (Latin for "layer") or strate is a language that influences or is influenced by another through contact. A substratum or substrate is a language that has lower power or prestige than another, while a superstratum or sup ...
or move to the tips of arborescent coral colonies.Vanwonterghem, I. and Webster, N.S. (2020) "Coral reef microorganisms in a changing climate". ''Iscience'', 23(4). . Around 6 million people, the majority who live in developing countries, depend on coral reef fisheries. These mass die-offs due to extreme hypoxic events can have severe impacts on reef fish populations. Coral reef ecosystems offer a variety of essential ecosystem services including shoreline protection,
nitrogen fixation Nitrogen fixation is a chemical process by which molecular nitrogen (), with a strong triple covalent bond, in the air is converted into ammonia () or related nitrogenous compounds, typically in soil or aquatic systems but also in industry. Atmo ...
, and waste assimilation, and tourism opportunities. The continued decline of oxygen in oceans on coral reefs is concerning because it takes many years (decades) to repair and regrow corals.


Seagrass beds

Globally,
seagrass Seagrasses are the only flowering plants which grow in marine environments. There are about 60 species of fully marine seagrasses which belong to four families ( Posidoniaceae, Zosteraceae, Hydrocharitaceae and Cymodoceaceae), all in the ...
has been declining rapidly. It is estimated that 21% of the 71 known seagrass species have decreasing population trends and 11% of those species have been designated as
threatened Threatened species are any species (including animals, plants and fungi) which are vulnerable to endangerment in the near future. Species that are threatened are sometimes characterised by the population dynamics measure of '' critical depe ...
on the ICUN Red List. Hypoxia that leads to
eutrophication Eutrophication is the process by which an entire body of water, or parts of it, becomes progressively enriched with minerals and nutrients, particularly nitrogen and phosphorus. It has also been defined as "nutrient-induced increase in phyt ...
caused form ocean deoxygenation is one of the main underlying factors of these die-offs. Eutrophication causes enhanced nutrient enrichment which can result in seagrass productivity, but with continual nutrient enrichment in seagrass meadows, it can cause excessive growth of
microalgae Microalgae or microphytes are microscopic algae invisible to the naked eye. They are phytoplankton typically found in freshwater and marine systems, living in both the water column and sediment. They are unicellular species which exist indiv ...
,
epiphyte An epiphyte is an organism that grows on the surface of a plant and derives its moisture and nutrients from the air, rain, water (in marine environments) or from debris accumulating around it. The plants on which epiphytes grow are called phoroph ...
s and
phytoplankton Phytoplankton () are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems. The name comes from the Greek words (), meaning 'plant', and (), meaning 'wanderer' or 'drifter'. ...
resulting in hypoxic conditions. Seagrass is both a source and a sink for oxygen in the surrounding water column and sediments. At night, the inner part of seagrass oxygen pressure is linearly related to the oxygen concentration in the water column, so low water column oxygen concentrations often result in hypoxic seagrass tissues, which can eventually kill off the seagrass. Normally, seagrass sediments must supply oxygen to the below-ground tissue through either photosynthesis or by diffusing oxygen from the water column through leaves to
rhizome In botany and dendrology, a rhizome (; , ) is a modified subterranean plant stem that sends out roots and shoots from its nodes. Rhizomes are also called creeping rootstalks or just rootstalks. Rhizomes develop from axillary buds and grow ...
s and roots. However, with the change in seagrass oxygen balances, it can often result in hypoxic seagrass tissues. Seagrass exposed to this hypoxic water column show increased respiration, reduced rates of photosynthesis, smaller leaves, and reduced number of leaves per shoot. This causes insufficient supply of oxygen to the belowground tissues for aerobic respiration, so seagrass must rely on the less-efficient
anaerobic respiration Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain. In aerobic organisms undergoing r ...
. Seagrass die-offs create a
positive feedback loop Positive feedback (exacerbating feedback, self-reinforcing feedback) is a process that occurs in a feedback loop which exacerbates the effects of a small disturbance. That is, the effects of a perturbation on a system include an increase in the ...
in which the mortality events cause more death as higher oxygen demands are created when dead plant material decomposes. Because hypoxia increases the invasion of sulfides in seagrass, this negatively affects seagrass through photosynthesis,
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run ...
and growth. Generally, seagrass is able to combat the sulfides by supplying enough oxygen to the roots. However, deoxygenation causes the seagrass to be unable to supply this oxygen, thus killing it off. Deoxygenation reduces the diversity of organisms inhabiting
seagrass bed A seagrass meadow or seagrass bed is an underwater ecosystem formed by seagrasses. Seagrasses are marine (saltwater) plants found in shallow coastal waters and in the brackish waters of estuaries. Seagrasses are flowering plants with stems and ...
s by eliminating species that cannot tolerate the low oxygen conditions. Indirectly, the loss and degradation of seagrass threatens numerous species that rely on seagrass for either shelter or food. The loss of seagrass also effects the physical characteristics and resilience of seagrass ecosystems. Seagrass beds provide nursery grounds and habitat to many harvested commercial, recreational, and subsistence fish and shellfish. In many tropical regions, local people are dependent on seagrass associated fisheries as a source of food and income. Seagrass also provides many ecosystem services including water purification, coastal protection, erosion control, sequestration and delivery of trophic subsidies to adjacent marine and terrestrial habitats. Continued deoxygenation causes the effects of hypoxia to be compounded by climate change which will increase the decline in seagrass populations.Waycott, M., Duarte, C.M., Carruthers, T.J., Orth, R.J., Dennison, W.C., Olyarnik, S., Calladine, A., Fourqurean, J.W., Heck, K.L., Hughes, A.R. and Kendrick, G.A. (2009
"Accelerating loss of seagrasses across the globe threatens coastal ecosystems".
''Proceedings of the national academy of sciences'', 106(30): 12377–12381.


Mangrove forests

Compared to seagrass beds and coral reefs, hypoxia is more common on a regular basis in
mangrove A mangrove is a shrub or tree that grows in coastal saline or brackish water. The term is also used for tropical coastal vegetation consisting of such species. Mangroves are taxonomically diverse, as a result of convergent evolution in severa ...
ecosystems, through ocean deoxygenation is compounding the negative effects by anthropogenic nutrient inputs and land use modification. Like seagrass, mangrove trees transport oxygen to roots of rhizomes, reduce sulfide concentrations, and alter microbial communities. Dissolved oxygen is more readily consumed in the interior of the mangrove forest. Anthropogenic inputs may push the limits of survival in many mangrove microhabitats. For example, shrimp ponds constructed in mangrove forests are considered the greatest anthropogenic threat to mangrove ecosystems. These shrimp ponds reduce
estuary An estuary is a partially enclosed coastal body of brackish water with one or more rivers or streams flowing into it, and with a free connection to the open sea. Estuaries form a transition zone between river environments and maritime environm ...
circulation and water quality which leads to the promotion of diel-cycling hypoxia. When the quality of the water degrades, the shrimp ponds are quickly abandoned leaving massive amounts of wastewater. This is a major source of water pollution that promotes ocean deoxygenation in the adjacent habitats. Due to these frequent hypoxic conditions, the water does not provide habitats to fish. When exposed to extreme hypoxia, ecosystem function can completely collapse. Extreme deoxygenation will affect the local fish populations, which are an essential food source. The environmental costs of shrimp farms in the mangrove forests grossly outweigh their economic benefits. Cessation of shrimp production and restoration of these areas and reduce eutrophication and anthropogenic hypoxia.


See also

*
Anoxic event Oceanic anoxic events or anoxic events ( anoxia conditions) describe periods wherein large expanses of Earth's oceans were depleted of dissolved oxygen (O2), creating toxic, euxinic (anoxic and sulfidic) waters. Although anoxic events have not ...
*
Anoxic waters Anoxic waters are areas of sea water, fresh water, or groundwater that are depleted of dissolved oxygen. The US Geological Survey defines anoxic groundwater as those with dissolved oxygen concentration of less than 0.5 milligrams per litre. Anoxic ...
* Dead zone (ecology) *
Ocean acidification Ocean acidification is the reduction in the pH value of the Earth’s ocean. Between 1751 and 2021, the average pH value of the ocean surface has decreased from approximately 8.25 to 8.14. The root cause of ocean acidification is carbon dioxid ...
* Microbiology of oxygen minimum zones * Seaweed#Bioremediation


References


External links


Ocean DeoxygenationNASA: Ocean Deoxygenation: Past, Present, and FutureVideo: Ocean Deoxygenation, Our Ocean's Oxygen Supply & Demand Issue
{{DEFAULTSORT:Ocean Deoxygenation Oceanographical terminology Environmental issues with water Oxygen