Number of neutrons
   HOME

TheInfoList



OR:

The neutron number, symbol ''N'', is the number of
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s in a nuclide.
Atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
(proton number) plus neutron number equals
mass number The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxima ...
: . The difference between the neutron number and the atomic number is known as the neutron excess: . Neutron number is not written explicitly in nuclide symbol notation, but can be inferred as it is the difference between the two left-hand numbers (atomic number and mass). Nuclides that have the same neutron number but different proton numbers are called
isotone Two nuclides are isotones if they have the same neutron number ''N'', but different proton number ''Z''. For example, boron-12 and carbon-13 nuclei both contain 7 neutrons, and so are isotones. Similarly, 36S, 37Cl, 38Ar, 39K, and 40Ca nucl ...
s. This word was formed by replacing the p in
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
with n for neutron. Nuclides that have the same mass number are called isobars. Nuclides that have the same neutron excess are called isodiaphers.Teh Fu Yen, ''Chemistry for Engineers'' (Imperial College Press, 2008), p.265
/ref> Chemical properties are primarily determined by proton number, which determines which
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
the nuclide is a member of; neutron number has only a slight influence. Neutron number is primarily of interest for nuclear properties. For example,
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
s with odd neutron number are usually
fissile In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be t ...
(
fissionable In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be typi ...
with
slow neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s) while actinides with even neutron number are usually not fissile (but are fissionable with
fast neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s). Only 58 stable nuclides have an odd neutron number, compared to 194 with an even neutron number. No odd-neutron-number isotope is the most naturally abundant isotope in its element, except for beryllium-9 (which is the only stable
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form m ...
isotope),
nitrogen-14 Natural nitrogen (7N) consists of two stable isotopes: the vast majority (99.6%) of naturally occurring nitrogen is nitrogen-14, with the remainder being nitrogen-15. Fourteen radioisotopes are also known, with atomic masses ranging from 10 to 25, ...
, and
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
-195. No stable nuclides have a neutron number of 19, 21, 35, 39, 45, 61, 89, 115, 123, or ≥ 127. There are 6 stable nuclides and one radioactive primordial nuclide with neutron number 82 (82 is the neutron number with the most stable nuclides, since it is a magic number):
barium-138 Naturally occurring barium (56Ba) is a mix of six stable isotopes and one very long-lived radioactive primordial isotope, barium-130, identified as being unstable by geochemical means (from analysis of the presence of its daughter xenon-130 in roc ...
,
lanthanum-139 Naturally occurring lanthanum (57La) is composed of one stable (139La) and one radioactive (138La) isotope, with the stable isotope, 139La, being the most abundant (99.91% natural abundance). There are 38 radioisotopes that have been characteriz ...
,
cerium-140 Naturally occurring cerium (58Ce) is composed of 4 stable isotopes: 136Ce, 138Ce, 140Ce, and 142Ce, with 140Ce being the most abundant (88.48% natural abundance) and the only one theoretically stable; 136Ce, 138Ce, and 142Ce are predicted to unde ...
,
praseodymium-141 Naturally occurring praseodymium (59Pr) is composed of one stable isotope, 141Pr. Thirty-eight radioisotopes have been characterized with the most stable being 143Pr, with a half-life of 13.57 days and 142Pr, with a half-life of 19.12 hours. All o ...
,
neodymium-142 Naturally occurring neodymium (60Nd) is composed of 5 stable isotopes, 142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2% natural abundance), and 2 long-lived radioisotopes, 144Nd and 150Nd. In all, 33 radioisotopes o ...
, and
samarium-144 Naturally occurring samarium (62Sm) is composed of five stable isotopes, 144Sm, 149Sm, 150Sm, 152Sm and 154Sm, and two extremely long-lived radioisotopes, 147Sm (half life: 1.06 y) and 148Sm (7 y), with 152Sm being the most abundant (26. ...
, as well as the radioactive primordial nuclide xenon-136, which decays by a very slow double beta process. Except 20, 50 and 82 (all these three numbers are magic numbers), all other neutron numbers have at most 4 stable isotopes (in the case of 20, there are 5 stable isotopes 36S, 37Cl, 38Ar, 39K, and 40Ca, and in the case for 50, there are 5 stable nuclides: 86Kr, 88Sr, 89Y, 90Zr, and 92Mo, and 1 radioactive primordial nuclide, 87Rb). Most odd neutron numbers have at most one stable isotope (exceptions are 1 (2H and 3He), 5 (9Be and 10B), 7 (13C and 14N), 55 (97Mo and 99Ru) and 107 (179Hf and 180mTa). However, some even neutron numbers also have only one stable isotope; these numbers are 2 (4He), 4 (7Li), 84 (142Ce), 86 (146Nd) and 126 (208Pb).{{NUBASE2016, ref Only two stable nuclides have fewer neutrons than protons:
hydrogen-1 Hydrogen (1H) has three naturally occurring isotopes, sometimes denoted , , and . and are stable, while has a half-life of years. Heavier isotopes also exist, all of which are synthetic and have a half-life of less than one zeptosecond (10∠...
and helium-3. Hydrogen-1 has the smallest neutron number, 0.


References

Nuclear physics