Nuclear spectroscopy
   HOME

TheInfoList



OR:

Nuclear spectroscopy is a superordinate concept of methods that uses properties of a nucleus to probe
material properties A materials property is an intensive property of a material, i.e., a physical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another c ...
. By emission or absorption of radiation from the nucleus information of the
local structure The local structure is a term in nuclear spectroscopy that refers to the structure of the nearest neighbours around an atom in crystals and molecules. E.g. in crystals the atoms order in a regular fashion on wide ranges to form even gigantic highl ...
is obtained, as an interaction of an
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, ...
with its closest neighbours. Or a
radiation spectrum In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visib ...
of the nucleus is detected. Most methods base on
hyperfine interactions In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate energy levels and the resulting splittings in those energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nu ...
, which are the interaction of the nucleus with its interaction of its atom's electrons and their interaction with the nearest neighbor atoms as well as external fields. Nuclear spectroscopy is mainly applied to solids and liquids, rarely in gases. Its methods are important tools in condensed matter physics and
solid state chemistry Solid-state chemistry, also sometimes referred as materials chemistry, is the study of the synthesis, structure, and properties of solid phase materials, particularly, but not necessarily exclusively of, non-molecular solids. It therefore has a str ...
.


Methods

In
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the ...
these methods are used to study properties of the nucleus itself. Methods for studies of the nucleus: *
Gamma spectroscopy Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics. Most radioactive sources produce gamma rays, which are of various energi ...
* Hypernuclear spectroscopy Methods for condensed matter studies: *
Nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
(NMR) *
Mössbauer spectroscopy Mössbauer spectroscopy is a spectroscopic technique based on the Mössbauer effect. This effect, discovered by Rudolf Mössbauer (sometimes written "Moessbauer", German: "Mößbauer") in 1958, consists of the nearly recoil-free emission and abs ...
*
Perturbed angular correlation The perturbed γ-γ angular correlation, PAC for short or PAC-Spectroscopy, is a method of nuclear solid-state physics with which magnetic and electric fields in crystal structures can be measured. In doing so, electrical field gradients and the L ...
(PAC, TDPAC, PAC spectroscopy) *
Muon spin spectroscopy Muon spin spectroscopy, also known as µSR, is an experimental technique based on the implantation of spin-polarized muons in matter and on the detection of the influence of the atomic, molecular or crystalline surroundings on their spin motion. ...
* Nuclear orientation * Channeling * Nuclear reaction analysis * Nuclear quadrupole resonance (NQR)


References

{{Reflist Spectroscopy Scientific techniques