Nuclear organization
   HOME

TheInfoList



OR:

Nuclear organization refers to the spatial distribution of
chromatin Chromatin is a complex of DNA and protein found in eukaryote, eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important ...
within a
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: * Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
. There are many different levels and scales of nuclear organisation.
Chromatin Chromatin is a complex of DNA and protein found in eukaryote, eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important ...
is a higher order structure of DNA. At the smallest scale, DNA is
packaged Packaging is the science, art and technology of enclosing or protecting products for distribution, storage, sale, and use. Packaging also refers to the process of designing, evaluating, and producing packages. Packaging can be described as a ...
into units called
nucleosome A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone proteins and resembles thread wrapped around a spool. The nucleosome is the fundame ...
s. The quantity and organisation of these nucleosomes can affect the accessibility of local chromatin. This has a knock-on effect on the expression of nearby
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
s, additionally determining whether or not they can be regulated by
transcription factors In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fun ...
. At slightly larger scales, DNA looping can physically bring together DNA elements that would otherwise be separated by large distances. These interactions allow regulatory signals to cross over large genomic distances—for example, from enhancers to promoters. In contrast, on a large scale, the arrangement of
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins ar ...
s can determine their properties. Chromosomes are organised into two compartments labelled A ("active") and B ("inactive"), each with distinct properties. Moreover, entire
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins ar ...
s segregate into distinct regions called chromosome territories.


Importance

Each human
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
contains around two metres of DNA, which must be tightly folded to fit inside the
cell nucleus The cell nucleus (pl. nuclei; from Latin or , meaning ''kernel'' or ''seed'') is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, h ...
. However, in order for the cell to function,
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s must be able to access the sequence information contained within the DNA, in spite of its tightly-packed nature. Hence, the cell has a number of mechanisms in place to control how DNA is organized. Moreover, nuclear organization can play a role in establishing cell identity. Cells within an organism have near identical
nucleic acid sequence A nucleic acid sequence is a succession of bases signified by a series of a set of five different letters that indicate the order of nucleotides forming alleles within a DNA (using GACT) or RNA (GACU) molecule. By convention, sequences are us ...
s, but often exhibit different
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology (biology), morphology or physical form and structure, its Developmental biology, developmental proc ...
s. One way in which this individuality occurs is through changes in
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ...
architecture, which can alter the expression of different sets of
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
s. These alterations can have a downstream effect on cellular functions such as
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and sub ...
facilitation,
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritan ...
,
nuclear transport Nuclear transport refers to the mechanisms by which molecules move across the nuclear membrane of a cell. The entry and exit of large molecules from the cell nucleus is tightly controlled by the nuclear pore complexes (NPCs). Although small molecul ...
, and alteration of
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: *Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics *Nuclear space *Nuclear ...
structure. Controlled changes in nuclear organization are essential for proper cellular function.


History and methodology

The organization of chromosomes into distinct regions within the nucleus was first proposed in 1885 by Carl Rabl. Later in 1909, with the help of the microscopy technology at the time,
Theodor Boveri Theodor Heinrich Boveri (12 October 1862 – 15 October 1915) was a German zoologist, comparative anatomist and co-founder of modern cytology. He was notable for the first hypothesis regarding cellular processes that cause cancer, and for desc ...
coined the termed chromosome territories after observing that chromosomes occupy individually distinct nuclear regions. Since then, mapping genome architecture has become a major topic of interest. Over the last ten years, rapid methodological developments have greatly advanced understanding in this field. Large-scale DNA organization can be assessed with DNA imaging using fluorescent tags, such as DNA Fluorescence in situ hybridization (FISH), and specialized microscopes. Additionally,
high-throughput sequencing DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. Th ...
technologies such as
Chromosome Conformation Capture Chromosome conformation capture techniques (often abbreviated to 3C technologies or 3C-based methods) are a set of molecular biology methods used to analyze the spatial organization of chromatin in a cell. These methods quantify the number of int ...
-based methods can measure how often DNA regions are in close proximity. At the same time, progress in genome-editing techniques (such as
CRISPR/Cas9 Cas9 (CRISPR associated protein 9, formerly called Cas5, Csn1, or Csx12) is a 160 kilodalton protein which plays a vital role in the immunological defense of certain bacteria against DNA viruses and plasmids, and is heavily utilized in genetic ...
, ZFNs, and TALENs) have made it easier to test the organizational function of specific DNA regions and proteins. There is also growing interest in the rheological properties of the interchromosomal space, studied by the means of
Fluorescence Correlation Spectroscopy Fluorescence correlation spectroscopy (FCS) is a statistical analysis, via time correlation, of stationary fluctuations of the fluorescence intensity. Its theoretical underpinning originated from L. Onsager's regression hypothesis. The analysis p ...
and its variants.


Architectural proteins

Architectural proteins regulate chromatin structure by establishing physical interactions between DNA elements. These proteins tend to be highly conserved across a majority of eukaryotic species. In mammals, key architectural proteins include: *
Histones In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are ...
: DNA is wrapped around histones to form
nucleosome A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone proteins and resembles thread wrapped around a spool. The nucleosome is the fundame ...
s, which are basic units of chromatin structure. Each nucleosome consists of 8 histone protein subunits, around which roughly 147 DNA base pairs are wrapped in 1.67 left-handed turns. Altogether, nucleosomes pack approximately 2 meters of double stranded DNA into a 10 µm diameter nucleus. The concentration and specific composition of histones used can determine local chromatin structure. For example,
euchromatin Euchromatin (also called "open chromatin") is a lightly packed form of chromatin ( DNA, RNA, and protein) that is enriched in genes, and is often (but not always) under active transcription. Euchromatin stands in contrast to heterochromatin, whi ...
is a form of chromatin with low nucleosome concentration - here, the DNA is exposed, promoting interactions with gene expression, replication, and organizational machinery. In contrast,
heterochromatin Heterochromatin is a tightly packed form of DNA or '' condensed DNA'', which comes in multiple varieties. These varieties lie on a continue between the two extremes of constitutive heterochromatin and facultative heterochromatin. Both play a rol ...
has high nucleosome concentration and is associated with repression of gene expression and replication, as the necessary proteins cannot interact with the DNA. *
Chromatin remodeling Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out ...
enzymes: These enzymes are responsible for promoting euchromatin or heterochromatin formation by a number of processes, particularly modifying histone tails or physically moving the nucleosomes. This in turn, helps regulate gene expression, replication, and how the chromatin interacts with architectural factors. The list of chromatin remodeling enzymes is extensive and many have specific roles within the nucleus. For example, in 2016 Wiechens et al. identified two human enzymes, SNF2H and SNF2L, that are active in regulating
CTCF Transcriptional repressor CTCF also known as 11-zinc finger protein or CCCTC-binding factor is a transcription factor that in humans is encoded by the ''CTCF'' gene. CTCF is involved in many cellular processes, including transcriptional regulatio ...
binding and therefore affect genome organization and transcription of many genes. * CCCTC-binding factor (CTCF), or 11-zinc finger protein, is considered the most prominent player in linking genome organization with gene expression. CTCF interacts with specific DNA sequences and a variety of other architectural proteins, chiefly cohesin - these behaviours allow it to mediate DNA looping, thus acting as transcriptional repressor, activator, and insulator. Furthermore, CTCF is often found at self-interacting domain boundaries, and can anchor the chromatin to the nuclear lamina. CTCF is also involved in
V(D)J recombination V(D)J recombination is the mechanism of somatic recombination that occurs only in developing lymphocytes during the early stages of T and B cell maturation. It results in the highly diverse repertoire of antibodies/immunoglobulins and T cell re ...
. *
Cohesin Cohesin is a protein complex that mediates sister chromatid cohesion, homologous recombination, and DNA looping. Cohesin is formed of SMC3, SMC1, SCC1 and SCC3 ( SA1 or SA2 in humans). Cohesin holds sister chromatids together after DNA rep ...
: The cohesin complex was initially discovered as a key player in
mitosis In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is maintai ...
, binding sister chromatids together to ensure proper segregation. However, cohesin has since been linked to many more functions within the cell. It has been found to help facilitate DNA repair and recombination, meiotic chromosome pairing and orientation, chromosome condensation, DNA replication, gene expression, and genome architecture. Cohesin is a heterodimer composed of the proteins SMC1 and SMC3 in combination with the SCC1 and SCC3 proteins. The entire complex is loaded onto DNA by the NIPBL-MAU2 complex in a ring-like fashion.


Levels of nuclear organisation


Linear DNA and chromosome basics

The first level of genome organization concerns how DNA is arranged linearly, and how it is packaged into
chromosomes A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins ar ...
. DNA is composed of two antiparallel strands of nucleic acids, with two bound and opposing nucleic acids referred to as DNA base pairs. In order for DNA to pack inside the tiny cell nucleus, each strand is wrapped around
histone In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn a ...
s, forming
nucleosome A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone proteins and resembles thread wrapped around a spool. The nucleosome is the fundame ...
structures. These nucleosome pack together to form
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins ar ...
s. Depending on the eukaryote, there are multiple independent chromosomes of varying sizes within each nucleus – for example, humans have 46 while giraffes have 30. Within regions of the chromosome, the order of the DNA base pairs makes up specific elements for gene expression and DNA replication. Some of the more common elements include protein coding genes (containing exons and introns), noncoding DNA, enhancers, promoters, operators, origins of replication, telomeres, and centromeres. As of yet, there is not much evidence towards the importance of specific order of these elements along or between individual chromosomes. For example, the distance between an enhancer and a promoter, interacting elements that form a basis of gene expression, can range from a few hundred base pairs to hundreds of kb away. As well, individual enhancers can interact with a number of different promoters and the same is true for a single promoter interacting with multiple different enhancers. However, on a larger scale, chromosomes are heterogeneous in the context of euchromatin and heterochromatin composition. As well, there is evidence of gene rich and poor regions and various domains associated with cell differentiation, active or repressed gene expression, DNA replication, and DNA recombination and repair. All of these help determine chromosome territories.


DNA looping

DNA looping is the first level of nuclear organization that involves chromosomal folding. In a DNA looping event, chromatin forms physical loops, bringing DNA regions into close contact. Thus, even regions that are far apart along the linear chromosome can be brought together in three-dimensional space. The process is facilitated by a number of factors including architectural proteins (primarily CTCF and Cohesin), transcription factors, co-activators, and ncRNAs. Importantly, DNA looping can be used to regulate gene expression – looping events can repress or activate genes, depending on the elements involved. Approximately 50% of human genes are believed to be involved in long range chromatin interactions through the process of DNA looping. Looping was first observed by
Walther Flemming Walther Flemming (21 April 1843 – 4 August 1905) was a German biologist and a founder of cytogenetics. He was born in Sachsenberg (now part of Schwerin) as the fifth child and only son of the psychiatrist Carl Friedrich Flemming (1799–18 ...
in 1878 when he was studying amphibian oocytes. It was not until the late 20th century when DNA looping was correlated with gene expression. For example, in 1990, Mandal and colleagues showed the importance of DNA looping in repressing the galactose and lactose operons in ''E coli''. In the presence of galactose or lactose, repressor proteins form protein-protein and protein-DNA interactions to loop the DNA. This in turn connects the gene promoters with upstream and downstream operators, effectively repressing gene expression by blocking transcription preinitiation complex (PIC) assembly at the promoter and therefore preventing transcription initiation. In gene activation, DNA looping typically brings together distal gene promoters and enhancers. Enhancers can recruit a large complex of proteins, such as the mediator complex, PIC, and other cell specific transcription factors, involved in initiating the transcription of a gene.


Chromosomal domains


Self-interacting domains

Self-interacting (or self-associating) domains are found in many organisms – in bacteria, they are referred to as Chromosomal Interacting Domains (CIDs), whereas in mammalian cells, they are called
Topologically Associating Domain A topologically associating domain (TAD) is a self-interacting genomic region, meaning that DNA sequences within a TAD physically interact with each other more frequently than with sequences outside the TAD. The median size of a TAD in mouse cells ...
s (TADs). Self-interacting domains can range from the 1–2 Mb scale in larger organisms to 10s of kb in single celled organisms. What characterizes a self-interacting domain is a set of common features. The first is that self-interacting domains have a higher ratio of chromosomal contacts within the domain than outside it. They are formed through the help of architectural proteins and contain within them many chromatin loops. This characteristic was discovered using Hi-C techniques. Second, self-interacting domains correlate with regulation of gene expression. There are specific domains that are associated with active transcription and other domains that repress transcription. What distinguishes whether a domain takes a particular form is dependent on which associated genes need to be active/inactive during particular phase of growth, cell cycle stage, or within a specific cell type. Cellular differentiation is determined by particular sets of genes being on or off, corresponding with the unique makeup of an individual cell's self-interacting domains. Lastly, the outside boundaries of these domains contain a higher frequency of architectural protein binding sites, regions and epigenetic marks correlated to active transcription, housekeeping genes, and
Short interspersed nuclear element Short interspersed nuclear elements (SINEs) are non-autonomous, non-coding transposable elements (TEs) that are about 100 to 700 base pairs in length. They are a class of retrotransposons, DNA elements that amplify themselves throughout eukaryot ...
s (SINEs). An example of a subset of self-interacting domains is active chromatin hubs (ACHs). These hubs were discovered during observation of activated alpha- and beta-globin loci. ACHs are formed through extensive DNA looping to form a "hub" of regulatory elements in order to coordinate the expression of a subset of genes.


Lamina-associating domains and nucleolar-associating domains

Lamina-associating domains (LADs) and nucleolar-associating domains (NADs) are regions of the chromosome that interact with the nuclear lamina and nucleolus, respectively. Making up approximately 40% of the genome, LADs consist mostly of gene poor regions and span between 40kb to 30Mb in size. There are two known types of LADs: constitutive LADs (cLADs) and facultative LADs (fLADs). cLADs are A-T rich heterochromatin regions that remain on lamina and are seen across many types of cells and species. There is evidence that these regions are important to the structural formation of interphase chromosome. On the other hand, fLADs have varying lamina interactions and contain genes that are either activated or repressed between individual cells indicating cell-type specificity. The boundaries of LADs, like self-interacting domains, are enriched in transcriptional elements and architectural protein binding sites. NADs, which constitutes 4% of the genome, share nearly all of the same physical characteristics as LADs. In fact, DNA analysis of these two types of domains have shown that many sequences overlap, indicating that certain regions may switch between lamina-binding and nucleolus-binding. NADs are associated with nucleolus function. The nucleolus is the largest sub-organelle within the nucleus and is the principal site for rRNA transcription. It also acts in signal recognition particle biosynthesis, protein sequestration, and viral replication. The nucleolus forms around rDNA genes from different chromosomes. However, only a subset of rDNA genes is transcribed at a time and do so by looping into the interior of the nucleolus. The rest of the genes lay on the periphery of the sub-nuclear organelle in silenced heterochromatin state.


A/B compartments

A/B compartments were first discovered in early Hi-C studies. Researchers noticed that the whole genome could be split into two spatial compartments, labelled "A" and "B", where regions in compartment A tend to interact preferentially with A compartment-associated regions than B compartment-associated ones. Similarly, regions in compartment B tend to associate with other B compartment-associated regions. A/B compartment-associated regions are on the multi-Mb scale and correlate with either open and expression-active chromatin ("A" compartments) or closed and expression-inactive chromatin ("B" compartments). A compartments tend to be gene-rich, have high
GC-content In molecular biology and genetics, GC-content (or guanine-cytosine content) is the percentage of nitrogenous bases in a DNA or RNA molecule that are either guanine (G) or cytosine (C). This measure indicates the proportion of G and C bases out ...
, contain histone markers for active transcription, and usually displace the interior of the nucleus. As well, they are typically made up of self-interacting domains and contain early replication origins. B compartments, on the other hand, tend to be gene-poor,
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in Britis ...
, contain histone markers for gene silencing, and lie on the nuclear periphery. They consist mostly of LADs and contain late replication origins. In addition, higher resolution Hi-C coupled with machine learning methods has revealed that A/B compartments can be refined into subcompartments. The fact that compartments self-interact is consistent with the idea that the nucleus localizes proteins and other factors such as long non-coding RNA (lncRNA) in regions suited for their individual roles. An example of this is the presence of multiple transcription factories throughout the nuclear interior. These factories are associated with elevated levels of transcription due to the high concentration of transcription factors (such as transcription protein machinery, active genes, regulatory elements, and nascent RNA). Around 95% of active genes are transcribed within transcription factories. Each factory can transcribe multiple genes – these genes need not have similar product functions, nor do they need to lie on the same chromosome. Finally, the co-localization of genes within transcription factories is known to depend on cell type.


Chromosome territories

The last level of organization concerns the distinct positioning of individual chromosomes within the nucleus. The region occupied by a chromosome is called a chromosome territory (CT). Among eukaryotes, CTs have several common properties. First, although chromosomal locations are not the same across cells within a population, there is some preference among individual chromosomes for particular regions. For example, large, gene-poor chromosomes are commonly located on the periphery near the nuclear lamina while smaller, gene-rich chromosomes group closer to the center of the nucleus. Second, individual chromosome preference is variable among different cell types. For example, the X-chromosome has shown to localize to the periphery more often in liver cells than in kidney cells. Another conserved property of chromosome territories is that homologous chromosomes tend to be far apart from one another during cell interphase. The final characteristic is that the position of individual chromosomes during each cell cycle stays relatively the same until the start of mitosis. The mechanisms and reasons behind chromosome territory characteristics is still unknown and further experimentation is needed.


References


External links

*{{Commons category-inline Cell nucleus Cellular processes