Nuclear magnetic resonance spectroscopy
   HOME

TheInfoList



OR:

Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz ( GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (sho ...
s into
nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, J ...
practice, NMR spectroscopy is the definitive method to identify monomolecular
organic compound In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. Th ...
s. The principle of NMR usually involves three sequential steps: # The alignment (polarization) of the magnetic nuclear spins in an applied, constant magnetic field B0. # The perturbation of this alignment of the nuclear spins by a weak oscillating magnetic field, usually referred to as a radio-frequency (RF) pulse. # Detection and analysis of the electromagnetic waves emitted by the nuclei of the sample as a result of this perturbation. Similarly, biochemists use NMR to identify
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s and other complex molecules. Besides identification, NMR spectroscopy provides detailed information about the structure, dynamics, reaction state, and chemical environment of molecules. The most common types of NMR are
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
and
carbon-13 NMR Carbon-13 (C13) nuclear magnetic resonance (most commonly known as carbon-13 NMR spectroscopy or 13C NMR spectroscopy or sometimes simply referred to as carbon NMR) is the application of nuclear magnetic resonance (NMR) spectroscopy to carbon. It ...
spectroscopy, but it is applicable to any kind of sample that contains nuclei possessing
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally ...
. NMR spectra are unique, well-resolved, analytically tractable and often highly predictable for small molecules. Different
functional group In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the r ...
s are obviously distinguishable, and identical functional groups with differing neighboring substituents still give distinguishable signals. NMR has largely replaced traditional wet chemistry tests such as color reagents or typical chromatography for identification. A disadvantage is that a relatively large amount, 2–50 mg, of a purified substance is required, although it may be recovered through a workup. Preferably, the sample should be dissolved in a solvent, because NMR analysis of solids requires a dedicated magic angle spinning machine and may not give equally well-resolved spectra. The timescale of NMR is relatively long, and thus it is not suitable for observing fast phenomena, producing only an averaged spectrum. Although large amounts of impurities do show on an NMR spectrum, better methods exist for detecting impurities, as NMR is inherently not very sensitive - though at higher frequencies, sensitivity is higher. Correlation spectroscopy is a development of ordinary NMR. In
two-dimensional NMR Two-dimensional nuclear magnetic resonance spectroscopy (2D NMR) is a set of nuclear magnetic resonance spectroscopy (NMR) methods which give data plotted in a space defined by two frequency axes rather than one. Types of 2D NMR include correlation ...
, the emission is centered around a single frequency, and correlated resonances are observed. This allows identifying the neighboring substituents of the observed functional group, allowing unambiguous identification of the resonances. There are also more complex 3D and 4D methods and a variety of methods designed to suppress or amplify particular types of resonances. In nuclear Overhauser effect (NOE) spectroscopy, the relaxation of the resonances is observed. As NOE depends on the proximity of the nuclei, quantifying the NOE for each nucleus allows for construction of a three-dimensional model of the molecule. NMR spectrometers are relatively expensive; universities usually have them, but they are less common in private companies. Between 2000 and 2015, an NMR spectrometer cost around 500,000 - 5 million USD. Modern NMR spectrometers have a very strong, large and expensive liquid helium-cooled
superconducting Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
magnet, because resolution directly depends on magnetic field strength. Less expensive machines using permanent magnets and lower resolution are also available, which still give sufficient performance for certain applications such as reaction monitoring and quick checking of samples. There are even benchtop nuclear magnetic resonance spectrometers. NMR can be observed in magnetic fields less than a millitesla. Low-resolution NMR produces broader peaks which can easily overlap one another causing issues in resolving complex structures. The use of higher strength magnetic fields result in clear resolution of the peaks and is the standard in industry.


History

Credit for the discovery of NMR goes to
Isidor Isaac Rabi Isidor Isaac Rabi (; born Israel Isaac Rabi, July 29, 1898 – January 11, 1988) was an American physicist who won the Nobel Prize in Physics in 1944 for his discovery of nuclear magnetic resonance, which is used in magnetic resonance ima ...
, who received the Nobel Prize in Physics in 1944. The Purcell group at
Harvard University Harvard University is a private Ivy League research university in Cambridge, Massachusetts. Founded in 1636 as Harvard College and named for its first benefactor, the Puritan clergyman John Harvard, it is the oldest institution of highe ...
and the Bloch group at
Stanford University Stanford University, officially Leland Stanford Junior University, is a private research university in Stanford, California. The campus occupies , among the largest in the United States, and enrolls over 17,000 students. Stanford is conside ...
independently developed NMR spectroscopy in the late 1940s and early 1950s.
Edward Mills Purcell Edward Mills Purcell (August 30, 1912 – March 7, 1997) was an American physicist who shared the 1952 Nobel Prize for Physics for his independent discovery (published 1946) of nuclear magnetic resonance in liquids and in solids. Nuclear mag ...
and Felix Bloch shared the 1952
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
for their discoveries.


Basic NMR techniques


Resonant frequency

When placed in a magnetic field, NMR active nuclei (such as 1H or 13C) absorb
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
at a frequency characteristic of the
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass num ...
. The resonant frequency, energy of the radiation absorbed, and the intensity of the signal are proportional to the strength of the magnetic field. For example, in a 21 Tesla magnetic field, hydrogen nuclei (commonly referred to as protons) resonate at 900 MHz. It is common to refer to a 21 T magnet as a 900 MHz magnet since hydrogen is the most common nucleus detected, however different nuclei will resonate at different frequencies at this field strength in proportion to their nuclear magnetic moments.


Sample handling

An NMR spectrometer typically consists of a spinning sample-holder inside a very strong magnet, a radio-frequency emitter, and a receiver with a probe (an antenna assembly) that goes inside the magnet to surround the sample, optionally gradient coils for diffusion measurements, and electronics to control the system. Spinning the sample is usually necessary to average out diffusional motion, however some experiments call for a stationary sample when solution movement is an important variable. For instance, measurements of diffusion constants (''diffusion ordered spectroscopy'' or DOSY) are done using a stationary sample with spinning off, and flow cells can be used for online analysis of process flows.


Deuterated solvents

The vast majority of molecules in a solution are solvent molecules, and most regular solvents are
hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or ...
s and so contain NMR-active protons. In order to avoid detecting only signals from solvent hydrogen atoms, deuterated solvents are used where 99+% of the protons are replaced with
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
(hydrogen-2). The most widely used deuterated solvent is deuterochloroform (CDCl3), although other solvents may be used for various reasons, such as solubility of a sample, desire to control hydrogen bonding, or melting or boiling points. The chemical shifts of a molecule will change slightly between solvents, and the solvent used will almost always be reported with chemical shifts. NMR spectra are often calibrated against the known solvent residual proton peak instead of added tetramethylsilane.


Shim and lock

To detect the very small frequency shifts due to nuclear magnetic resonance, the applied magnetic field must be constant throughout the sample volume. High resolution NMR spectrometers use shims to adjust the homogeneity of the magnetic field to parts per billion ( ppb) in a volume of a few cubic centimeters. In order to detect and compensate for inhomogeneity and drift in the magnetic field, the spectrometer maintains a "lock" on the solvent deuterium frequency with a separate lock unit, which is essentially an additional transmitter and RF processor tuned to the lock nucleus (deuterium) rather than the nuclei of the sample of interest. In modern NMR spectrometers shimming is adjusted automatically, though in some cases the operator has to optimize the shim parameters manually to obtain the best possible resolution


Acquisition of spectra

Upon excitation of the sample with a radio frequency (60–1000 MHz) pulse, a nuclear magnetic resonance response - a free induction decay (FID) - is obtained. It is a very weak signal, and requires sensitive radio receivers to pick up. A
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed ...
is carried out to extract the frequency-domain spectrum from the raw time-domain FID. A spectrum from a single FID has a low
signal-to-noise ratio Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in de ...
, but it improves readily with averaging of repeated acquisitions. Good 1H NMR spectra can be acquired with 16 repeats, which takes only minutes. However, for elements heavier than hydrogen, the relaxation time is rather long, e.g. around 8 seconds for 13C. Thus, acquisition of quantitative heavy-element spectra can be time-consuming, taking tens of minutes to hours. Following the pulse, the nuclei are, on average, excited to a certain angle vs. the spectrometer magnetic field. The extent of excitation can be controlled with the pulse width, typically ca. 3-8 µs for the optimal 90° pulse. The pulse width can be determined by plotting the (signed) intensity as a function of pulse width. It follows a
sine curve A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the '' sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often i ...
, and accordingly, changes sign at pulse widths corresponding to 180° and 360° pulses. Decay times of the excitation, typically measured in seconds, depend on the effectiveness of relaxation, which is faster for lighter nuclei and in solids, and slower for heavier nuclei and in solutions, and they can be very long in gases. If the second excitation pulse is sent prematurely before the relaxation is complete, the average magnetization vector has not decayed to ground state, which affects the strength of the signal in an unpredictable manner. In practice, the peak areas are then not proportional to the stoichiometry; only the presence, but not the amount of functional groups is possible to discern. An inversion recovery experiment can be done to determine the relaxation time and thus the required delay between pulses. A 180° pulse, an adjustable delay, and a 90° pulse is transmitted. When the 90° pulse exactly cancels out the signal, the delay corresponds to the time needed for 90° of relaxation. Inversion recovery is worthwhile for quantitive 13C, 2D and other time-consuming experiments.


Chemical shift

A spinning charge generates a magnetic field that results in a magnetic moment proportional to the spin. In the presence of an external magnetic field, two spin states exist (for a spin 1/2 nucleus): one spin up and one spin down, where one aligns with the magnetic field and the other opposes it. The difference in energy (ΔE) between the two spin states increases as the strength of the field increases, but this difference is usually very small, leading to the requirement for strong NMR magnets (1-20 T for modern NMR instruments). Irradiation of the sample with energy corresponding to the exact spin state separation of a specific set of nuclei will cause excitation of those set of nuclei in the lower energy state to the higher energy state. For spin 1/2 nuclei, the energy difference between the two spin states at a given magnetic field strength is proportional to their magnetic moment. However, even if all protons have the same magnetic moments, they do not give resonant signals at the same frequency values. This difference arises from the differing electronic environments of the nucleus of interest. Upon application of an external magnetic field, these electrons move in response to the field and generate local magnetic fields that oppose the much stronger applied field. This local field thus "shields" the proton from the applied magnetic field, which must therefore be increased in order to achieve resonance (absorption of rf energy). Such increments are very small, usually in parts per million (ppm). For instance, the proton peak from an aldehyde is shifted ca. 10 ppm compared to a hydrocarbon peak, since as an electron-withdrawing group, the carbonyl deshields the proton by reducing the local electron density. The difference between 2.3487 T and 2.3488 T is therefore about 42 ppm. However a frequency scale is commonly used to designate the NMR signals, even though the spectrometer may operate by sweeping the magnetic field, and thus the 42 ppm is 4200 Hz for a 100 MHz reference frequency (rf). However, given that the location of different NMR signals is dependent on the external magnetic field strength and the reference frequency, the signals are usually reported relative to a reference signal, usually that of TMS ( tetramethylsilane). Additionally, since the distribution of NMR signals is field dependent, these frequencies are divided by the spectrometer frequency. However, since we are dividing Hz by MHz, the resulting number would be too small, and thus it is multiplied by a million. This operation therefore gives a locator number called the "chemical shift" with units of parts per million. In general, chemical shifts for protons are highly predictable since the shifts are primarily determined by simpler shielding effects (electron density), but the chemical shifts for many heavier nuclei are more strongly influenced by other factors including excited states ("paramagnetic" contribution to shielding tensor). The chemical shift provides information about the structure of the molecule. The conversion of the raw data to this information is called ''assigning'' the spectrum. For example, for the 1H-NMR spectrum for ethanol (CH3CH2OH), one would expect signals at each of three specific chemical shifts: one for the C''H''3 group, one for the C''H''2 group and one for the O''H'' group. A typical CH3 group has a shift around 1 ppm, a CH2 attached to an OH has a shift of around 4 ppm and an OH has a shift anywhere from 2–6 ppm depending on the solvent used and the amount of hydrogen bonding. While the O atom does draw electron density away from the attached H through their mutual sigma bond, the electron lone pairs on the O bathe the H in their shielding effect. In paramagnetic NMR spectroscopy, measurements are conducted on paramagnetic samples. The paramagnetism gives rise to very diverse chemical shifts. In 1H NMR spectroscopy, the chemical shift range can span up to thousands of ppm. Because of molecular motion at room temperature, the three methyl protons ''average out'' during the NMR experiment (which typically requires a few ms). These protons become degenerate and form a peak at the same chemical shift. The shape and area of peaks are indicators of chemical structure too. In the example above—the proton spectrum of ethanol—the CH3 peak has three times the area of the OH peak. Similarly the CH2 peak would be twice the area of the OH peak but only 2/3 the area of the CH3 peak. Software allows analysis of signal intensity of peaks, which under conditions of optimal relaxation, correlate with the number of protons of that type. Analysis of signal intensity is done by integration—the mathematical process that calculates the area under a curve. The analyst must integrate the peak and not measure its height because the peaks also have ''width''—and thus its size is dependent on its area not its height. However, it should be mentioned that the number of protons, or any other observed nucleus, is only proportional to the intensity, or the integral, of the NMR signal in the very simplest one-dimensional NMR experiments. In more elaborate experiments, for instance, experiments typically used to obtain
carbon-13 Carbon-13 (13C) is a natural, stable isotope of carbon with a nucleus containing six protons and seven neutrons. As one of the environmental isotopes, it makes up about 1.1% of all natural carbon on Earth. Detection by mass spectrometry A mas ...
NMR spectra, the integral of the signals depends on the relaxation rate of the nucleus, and its scalar and dipolar coupling constants. Very often these factors are poorly known - therefore, the integral of the NMR signal is very difficult to interpret in more complicated NMR experiments.


J-coupling

Some of the most useful information for structure determination in a one-dimensional NMR spectrum comes from J-coupling or scalar coupling (a special case of spin–spin coupling) between NMR active nuclei. This coupling arises from the interaction of different spin states through the chemical bonds of a molecule and results in the splitting of NMR signals. For a proton, the local magnetic field is slightly different depending on whether an adjacent nucleus points towards or against the spectrometer magnetic field, which gives rise to two signals per proton instead of one. These splitting patterns can be complex or simple and, likewise, can be straightforwardly interpretable or deceptive. This coupling provides detailed insight into the connectivity of atoms in a molecule. Coupling to ''n'' equivalent (spin ½) nuclei splits the signal into a ''n''+1 multiplet with intensity ratios following Pascal's triangle as described on the right. Coupling to additional spins will lead to further splittings of each component of the multiplet e.g. coupling to two different spin ½ nuclei with significantly different coupling constants will lead to a ''doublet of doublets'' (abbreviation: dd). Note that coupling between nuclei that are chemically equivalent (that is, have the same chemical shift) has no effect on the NMR spectra and couplings between nuclei that are distant (usually more than 3 bonds apart for protons in flexible molecules) are usually too small to cause observable splittings. ''Long-range'' couplings over more than three bonds can often be observed in
cyclic Cycle, cycles, or cyclic may refer to: Anthropology and social sciences * Cyclic history, a theory of history * Cyclical theory, a theory of American political history associated with Arthur Schlesinger, Sr. * Social cycle, various cycles in so ...
and
aromatic In chemistry, aromaticity is a chemical property of cyclic ( ring-shaped), ''typically'' planar (flat) molecular structures with pi bonds in resonance (those containing delocalized electrons) that gives increased stability compared to satur ...
compounds, leading to more complex splitting patterns. For example, in the proton spectrum for ethanol described above, the CH3 group is split into a ''triplet'' with an intensity ratio of 1:2:1 by the two neighboring CH2 protons. Similarly, the CH2 is split into a ''quartet'' with an intensity ratio of 1:3:3:1 by the three neighboring CH3 protons. In principle, the two CH2 protons would also be split again into a ''doublet'' to form a ''doublet of quartets'' by the hydroxyl proton, but intermolecular exchange of the acidic hydroxyl proton often results in a loss of coupling information. Coupling to any spin-1/2 nuclei such as phosphorus-31 or fluorine-19 works in this fashion (although the magnitudes of the coupling constants may be very different). But the splitting patterns differ from those described above for nuclei with spin greater than ½ because the
spin quantum number In atomic physics, the spin quantum number is a quantum number (designated ) which describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. The phrase was originally used to describe t ...
has more than two possible values. For instance, coupling to deuterium (a spin 1 nucleus) splits the signal into a ''1:1:1 triplet'' because the spin 1 has three spin states. Similarly, a spin 3/2 nucleus such as 35Cl splits a signal into a ''1:1:1:1 quartet'' and so on. Coupling combined with the chemical shift (and the integration for protons) tells us not only about the chemical environment of the nuclei, but also the number of ''neighboring'' NMR active nuclei within the molecule. In more complex spectra with multiple peaks at similar chemical shifts or in spectra of nuclei other than hydrogen, coupling is often the only way to distinguish different nuclei.


Second-order (or strong) coupling

The above description assumes that the coupling constant is small in comparison with the difference in NMR frequencies between the inequivalent spins. If the shift separation decreases (or the coupling strength increases), the multiplet intensity patterns are first distorted, and then become more complex and less easily analyzed (especially if more than two spins are involved). Intensification of some peaks in a multiplet is achieved at the expense of the remainder, which sometimes almost disappear in the background noise, although the integrated area under the peaks remains constant. In most high-field NMR, however, the distortions are usually modest and the characteristic distortions (''roofing'') can in fact help to identify related peaks. Some of these patterns can be analyzed with the
method Method ( grc, μέθοδος, methodos) literally means a pursuit of knowledge, investigation, mode of prosecuting such inquiry, or system. In recent centuries it more often means a prescribed process for completing a task. It may refer to: *Scien ...
published by John Pople, though it has limited scope. Second-order effects decrease as the frequency difference between multiplets increases, so that high-field (i.e. high-frequency) NMR spectra display less distortion than lower frequency spectra. Early spectra at 60 MHz were more prone to distortion than spectra from later machines typically operating at frequencies at 200 MHz or above. Furthermore, as in the figure to the right, J-coupling can be used to identify ortho-meta-para substitution of a ring. Ortho coupling is the strongest at 15 Hz, Meta follows with an average of 2 Hz, and finally para coupling is usually insignificant for studies.


Magnetic inequivalence

More subtle effects can occur if chemically equivalent spins (i.e., nuclei related by symmetry and so having the same NMR frequency) have different coupling relationships to external spins. Spins that are chemically equivalent but are not indistinguishable (based on their coupling relationships) are termed magnetically inequivalent. For example, the 4 H sites of 1,2-dichlorobenzene divide into two chemically equivalent pairs by symmetry, but an individual member of one of the pairs has different couplings to the spins making up the other pair. Magnetic inequivalence can lead to highly complex spectra which can only be analyzed by computational modeling. Such effects are more common in NMR spectra of aromatic and other non-flexible systems, while conformational averaging about C−C bonds in flexible molecules tends to equalize the couplings between protons on adjacent carbons, reducing problems with magnetic inequivalence.


Correlation spectroscopy

Correlation spectroscopy Two-dimensional nuclear magnetic resonance spectroscopy (2D NMR) is a set of nuclear magnetic resonance spectroscopy (NMR) methods which give data plotted in a space defined by two frequency axes rather than one. Types of 2D NMR include correlation ...
is one of several types of two-dimensional nuclear magnetic resonance (NMR) spectroscopy or
2D-NMR Two-dimensional nuclear magnetic resonance spectroscopy (2D NMR) is a set of nuclear magnetic resonance spectroscopy (NMR) methods which give data plotted in a space defined by two frequency axes rather than one. Types of 2D NMR include correlation ...
. This type of NMR experiment is best known by its
acronym An acronym is a word or name formed from the initial components of a longer name or phrase. Acronyms are usually formed from the initial letters of words, as in ''NATO'' (''North Atlantic Treaty Organization''), but sometimes use syllables, as ...
, COSY. Other types of two-dimensional NMR include J-spectroscopy, exchange spectroscopy (EXSY), Nuclear Overhauser effect spectroscopy (NOESY), total correlation spectroscopy (TOCSY), and heteronuclear correlation experiments, such as
HSQC The heteronuclear single quantum coherence or heteronuclear single quantum correlation experiment, normally abbreviated as HSQC, is used frequently in NMR spectroscopy of organic molecules and is of particular significance in the field of protein NM ...
, HMQC, and HMBC. In correlation spectroscopy, emission is centered on the peak of an individual nucleus; if its magnetic field is correlated with another nucleus by through-bond (COSY, HSQC, etc.) or through-space (NOE) coupling, a response can also be detected on the frequency of the correlated nucleus. Two-dimensional NMR spectra provide more information about a molecule than one-dimensional NMR spectra and are especially useful in determining the structure of a
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and b ...
, particularly for molecules that are too complicated to work with using one-dimensional NMR. The first two-dimensional experiment, COSY, was proposed by Jean Jeener, a professor at Université Libre de Bruxelles, in 1971. This experiment was later implemented by Walter P. Aue, Enrico Bartholdi and
Richard R. Ernst Richard Robert Ernst (14 August 1933 – 4 June 2021) was a Swiss physical chemist and Nobel Laureate. Ernst was awarded the Nobel Prize in Chemistry in 1991 for his contributions towards the development of Fourier transform nuclear magnetic ...
, who published their work in 1976.


Solid-state nuclear magnetic resonance

A variety of physical circumstances do not allow molecules to be studied in solution, and at the same time not by other spectroscopic techniques to an atomic level, either. In solid-phase media, such as crystals, microcrystalline powders, gels, anisotropic solutions, etc., it is in particular the dipolar coupling and chemical shift anisotropy that become dominant to the behaviour of the nuclear spin systems. In conventional solution-state NMR spectroscopy, these additional interactions would lead to a significant broadening of spectral lines. A variety of techniques allows establishing high-resolution conditions, that can, at least for 13C spectra, be comparable to solution-state NMR spectra. Two important concepts for high-resolution solid-state NMR spectroscopy are the limitation of possible molecular orientation by sample orientation, and the reduction of anisotropic nuclear magnetic interactions by sample spinning. Of the latter approach, fast spinning around the magic angle is a very prominent method, when the system comprises spin 1/2 nuclei. Spinning rates of ca. 20 kHz are used, which demands special equipment. A number of intermediate techniques, with samples of partial alignment or reduced mobility, is currently being used in NMR spectroscopy. Applications in which solid-state NMR effects occur are often related to structure investigations on membrane proteins, protein fibrils or all kinds of polymers, and chemical analysis in inorganic chemistry, but also include "exotic" applications like the plant leaves and fuel cells. For example, Rahmani et al. studied the effect of pressure and temperature on the bicellar structures' self-assembly using deuterium NMR spectroscopy.A. Rahmani, C. Knight, and M. R. Morrow. Response to hydrostatic pressure of bicellar dispersions containing anionic lipid: Pressure-induced interdigitation. 2013, 29 (44), pp 13481–13490,


Biomolecular NMR spectroscopy


Proteins

Much of the innovation within NMR spectroscopy has been within the field of protein NMR spectroscopy, an important technique in
structural biology Structural biology is a field that is many centuries old which, and as defined by the Journal of Structural Biology, deals with structural analysis of living material (formed, composed of, and/or maintained and refined by living cells) at every le ...
. A common goal of these investigations is to obtain high resolution 3-dimensional structures of the protein, similar to what can be achieved by
X-ray crystallography X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
. In contrast to X-ray crystallography, NMR spectroscopy is usually limited to proteins smaller than 35 kDa, although larger structures have been solved. NMR spectroscopy is often the only way to obtain high resolution information on partially or wholly intrinsically unstructured proteins. It is now a common tool for the determination of
Conformation Activity Relationship Conformation generally means structural arrangement and may refer to: * Conformational isomerism, a form of stereoisomerism in chemistry ** Carbohydrate conformation ** Cyclohexane conformation ** Protein conformation ** Conformation activity rela ...
s where the structure before and after interaction with, for example, a drug candidate is compared to its known biochemical activity. Proteins are orders of magnitude larger than the small organic molecules discussed earlier in this article, but the basic NMR techniques and some NMR theory also applies. Because of the much higher number of atoms present in a protein molecule in comparison with a small organic compound, the basic 1D spectra become crowded with overlapping signals to an extent where direct spectral analysis becomes untenable. Therefore, multidimensional (2, 3 or 4D) experiments have been devised to deal with this problem. To facilitate these experiments, it is desirable to isotopically label the protein with 13C and 15N because the predominant naturally occurring isotope 12C is not NMR-active and the nuclear quadrupole moment of the predominant naturally occurring 14N isotope prevents high resolution information from being obtained from this nitrogen isotope. The most important method used for structure determination of proteins utilizes NOE experiments to measure distances between atoms within the molecule. Subsequently, the distances obtained are used to generate a 3D structure of the molecule by solving a distance geometry problem. NMR can also be used to obtain information on the dynamics and conformational flexibility of different regions of a protein.


Nucleic acids

Nucleic acid NMR is the use of NMR spectroscopy to obtain information about the structure and dynamics of poly
nucleic acid Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main ...
s, such as DNA or RNA. , nearly half of all known RNA structures had been determined by NMR spectroscopy. Nucleic acid and protein NMR spectroscopy are similar but differences exist. Nucleic acids have a smaller percentage of hydrogen atoms, which are the atoms usually observed in NMR spectroscopy, and because nucleic acid double helices are stiff and roughly linear, they do not fold back on themselves to give "long-range" correlations. The types of NMR usually done with nucleic acids are 1H or proton NMR, 13C NMR, 15N NMR, and 31P NMR.
Two-dimensional NMR Two-dimensional nuclear magnetic resonance spectroscopy (2D NMR) is a set of nuclear magnetic resonance spectroscopy (NMR) methods which give data plotted in a space defined by two frequency axes rather than one. Types of 2D NMR include correlation ...
methods are almost always used, such as correlation spectroscopy (COSY) and total coherence transfer spectroscopy (TOCSY) to detect through-bond nuclear couplings, and nuclear Overhauser effect spectroscopy (NOESY) to detect couplings between nuclei that are close to each other in space. Parameters taken from the spectrum, mainly NOESY cross-peaks and
coupling constants In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two ...
, can be used to determine local structural features such as
glycosidic bond A glycosidic bond or glycosidic linkage is a type of covalent bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate. A glycosidic bond is formed between the hemiacetal or hemiketal group ...
angles,
dihedral angle A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the un ...
s (using the Karplus equation), and sugar pucker conformations. For large-scale structure, these local parameters must be supplemented with other structural assumptions or models, because errors add up as the double helix is traversed, and unlike with proteins, the double helix does not have a compact interior and does not fold back upon itself. NMR is also useful for investigating nonstandard geometries such as bent helices, non-Watson–Crick basepairing, and
coaxial stacking Nucleic acid tertiary structure is the three-dimensional shape of a nucleic acid polymer. RNA and DNA molecules are capable of diverse functions ranging from molecular recognition to catalysis. Such functions require a precise three-dimensi ...
. It has been especially useful in probing the structure of natural RNA oligonucleotides, which tend to adopt complex conformations such as
stem-loop Stem-loop intramolecular base pairing is a pattern that can occur in single-stranded RNA. The structure is also known as a hairpin or hairpin loop. It occurs when two regions of the same strand, usually complementary in nucleotide sequence wh ...
s and
pseudoknot __NOTOC__ A pseudoknot is a nucleic acid secondary structure containing at least two stem-loop structures in which half of one stem is intercalated between the two halves of another stem. The pseudoknot was first recognized in the Turnip yellow m ...
s. NMR is also useful for probing the binding of nucleic acid molecules to other molecules, such as proteins or drugs, by seeing which resonances are shifted upon binding of the other molecule.


Carbohydrates

Carbohydrate NMR Carbohydrate NMR spectroscopy is the application of nuclear magnetic resonance (NMR) spectroscopy to structural and conformational analysis of carbohydrates. This method allows the scientists to elucidate structure of monosaccharides, oligosacchar ...
spectroscopy addresses questions on the structure and conformation of
carbohydrate In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may o ...
s. The analysis of carbohydrates by 1H NMR is challenging due to the limited variation in functional groups, which leads to 1H resonances concentrated in narrow bands of the NMR spectrum. In other words, there is poor spectral dispersion. The anomeric proton resonances are segregated from the others due to fact that the anomeric carbons bear two oxygen atoms. For smaller carbohydrates, the dispersion of the anomeric proton resonances facilitates the use of 1D TOCSY experiments to investigate the entire spin systems of individual carbohydrate residues.


Drug Discovery

Knowledge of energy minima and rotational energy barriers of small molecules in solution can be found using NMR, e.g. looking at free ligand conformational preferences and conformational dynamics, respectively. This can be used to guide drug design hypotheses, since experimental and calculated values are comparable. For example, AstraZeneca uses NMR for its oncology research & development.


See also

Related methods of nuclear spectroscopy: *
Mössbauer effect The Mössbauer effect, or recoilless nuclear resonance fluorescence, is a physical phenomenon discovered by Rudolf Mössbauer in 1958. It involves the resonant and recoil-free emission and absorption of gamma radiation by atomic nuclei bound in a ...
* Muon spin spectroscopy *
Perturbed angular correlation The perturbed γ-γ angular correlation, PAC for short or PAC-Spectroscopy, is a method of nuclear solid-state physics with which magnetic and electric fields in crystal structures can be measured. In doing so, electrical field gradients and the L ...


References


Further reading

* * * * *


External links

*
The Basics of NMR
- A non-technical overview of NMR theory, equipment, and techniques by Dr. Joseph Hornak, Professor of Chemistry at RIT
GAMMA and PyGAMMA Libraries
- GAMMA is an open source C++ library written for the simulation of Nuclear Magnetic Resonance Spectroscopy experiments. PyGAMMA is a Python wrapper around GAMMA.
relax
Software for the analysis of NMR dynamics
Vespa
- VeSPA (Versatile Simulation, Pulses and Analysis) is a free software suite composed of three Python applications. These GUI based tools are for magnetic resonance (MR) spectral simulation, RF pulse design, and spectral processing and analysis of MR data. {{Authority control Nuclear magnetic resonance Nuclear chemistry Nuclear physics