Nonlinear metamaterials
   HOME

TheInfoList



OR:

A nonlinear metamaterial is an artificially constructed material that can exhibit properties not found in nature. Its response to
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
can be characterized by its
permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ''ε'' ( epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in ...
and material permeability. The product of the permittivity and permeability results in the
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
. Unlike natural materials, nonlinear metamaterials can produce a negative refractive index. These can also produce a more pronounced nonlinear response than naturally occurring materials. Nonlinear metamaterials are a periodic, nonlinear,
transmission medium A transmission medium is a system or substance that can mediate the propagation of signals for the purposes of telecommunication. Signals are typically imposed on a wave of some kind suitable for the chosen medium. For example, data can modulate ...
. These are a type of
negative index metamaterial Negative-index metamaterial or negative-index material (NIM) is a metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range. NIMs are constructed of periodic basic parts called unit cells, whi ...
where the
nonlinear In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
ity is available because the microscopic
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
of the
inclusion Inclusion or Include may refer to: Sociology * Social inclusion, aims to create an environment that supports equal opportunity for individuals and groups that form a society. ** Inclusion (disability rights), promotion of people with disabiliti ...
s can be larger than the macroscopic
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
of the electromagnetic (EM) source. This then becomes a useful tool which allows for enhancing the nonlinear behavior of the
metamaterial A metamaterial (from the Greek word μετά ''meta'', meaning "beyond" or "after", and the Latin word ''materia'', meaning "matter" or "material") is any material engineered to have a property that is not found in naturally occurring materials. ...
. A dominant nonlinear response, however, can be derived from the hysteresis-type dependence of the material's
magnetic permeability In electromagnetism, permeability is the measure of magnetization that a material obtains in response to an applied magnetic field. Permeability is typically represented by the (italicized) Greek letter ''μ''. The term was coined by William ...
on the magnetic component of the incident
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
(light) propagating through the material. Furthermore, the hysteresis-type dependence of the magnetic permeability on the
field intensity In physics, field strength means the ''magnitude'' of a vector-valued field (e.g., in volts per meter, V/m, for an electric field ''E''). For example, an electromagnetic field results in both electric field strength and magnetic field strength. A ...
allows changing the material from left to right-handed and back.
Nonlinear In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
media are essential for
nonlinear optics Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in ''nonlinear media'', that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typica ...
. However most
optical Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviole ...
materials have a relatively weak nonlinear response, meaning that their properties only change by a small amount for large changes in intensity of the
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
. Nonlinear metamaterials can overcome this limitation, since the local fields of the resonant structures can be much larger than the average value of the field - in this respect metamaterials are similar to other composite media, such e.g. as random metal-dielectric composites, including fractal clusters and semicoutinouos/percolation metal films, where the areas with enhanced local light fields - “hot spots” - produce giant linear and non-linear optical responses.M.I. Stockman, V.M. Shalaev, M. Moskovits, R. Botet, T.F. George
Enhanced Raman scattering by fractal clusters: Scale-invariant theory
Physical Review B, v. 46, pp. 2821–2830 (1992)


Overview of metamaterials

Metamaterials are incarnations of materials first proposed by a Russian theorist,
Victor Veselago Victor Georgievich Veselago (13 June 1929, Ukraine – 15 September 2018)metamaterial A metamaterial (from the Greek word μετά ''meta'', meaning "beyond" or "after", and the Latin word ''materia'', meaning "matter" or "material") is any material engineered to have a property that is not found in naturally occurring materials. ...
, are being developed in order to manipulate
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
in new ways. Optical and electromagnetic properties of natural materials are often altered through chemistry. With metamaterials optical and electromagnetic properties can be engineered through the geometry of its unit cells. The unit cells are materials that are ordered in geometric arrangements with dimensions that are fractions of the wavelength of the radiated
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
. By having the freedom to alter effects by adjusting the configurations and sizes of the unit cells, control over
permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ''ε'' ( epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in ...
and
magnetic permeability In electromagnetism, permeability is the measure of magnetization that a material obtains in response to an applied magnetic field. Permeability is typically represented by the (italicized) Greek letter ''μ''. The term was coined by William ...
can be achieved. These two parameters (or quantities) determine the propagation of electromagnetic waves in matter. Therefore, the achievable electromagnetic and optical effects can be extended. Optical properties can be expanded beyond the capabilities of lenses, mirrors, and other conventional materials. One of the effects most studied is the negative index of refraction first proposed by Victor Veselago in 1967. Negative index materials, exhibit optical properties opposite to those of glass, air, and the other conventional materials. At the correct frequencies, the negative index materials refract electromagnetic waves in novel ways, to a zero index or negative index. Also, energy can propagate in the opposite direction which can result in compensation mechanisms, among other possibilities.


Interactions

Materials which scatter
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 tera ...
or other
electromagnetic waves In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) lig ...
create a general
physical process Physical changes are changes affecting the form of a chemical substance, but not its chemical composition. Physical changes are used to separate mixtures into their component compounds, but can not usually be used to separate compounds into chem ...
where the different
frequencies Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
of light are forced to deviate from a straight trajectory. It is because, physically, the material is non-uniform at one, or more, or many places. Furthermore, the
optical science Atomic, molecular, and optical physics (AMO) is the study of matter-matter and light-matter interactions; at the scale of one or a few atoms and energy scales around several electron volts. The three areas are closely interrelated. AMO theory in ...
s make predictions about the path of light traversing through a material. When light deviates from its predicted (reflected) path, this also is considered
scattering Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including ...
. The
split ring resonator A split-ring resonator (SRR) is an artificially produced structure common to metamaterials. Its purpose is to produce the desired magnetic susceptibility (magnetic response) in various types of metamaterials up to 200 Terahertz (unit), terahertz. ...
s which make up metamaterials are engineered to scatter light at
resonance Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillatin ...
. Moreover, these resonant scattering elements are purposely designed at a uniform size throughout the material. This uniform size is much smaller than the
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
of the
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
of light propagating through the material. Since the repeating, scattering, resonant elements, which make up the engineered material are much smaller than the frequency of propagating light, metamaterials can now, also, be described in terms of
macroscopic The macroscopic scale is the length scale on which objects or phenomena are large enough to be visible with the naked eye, without magnifying optical instruments. It is the opposite of microscopic. Overview When applied to physical phenomena an ...
quantities. This description is simply another way to view metamaterials. And these are
electric permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ''ε'' ( epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in ...
, ''ε'' and
magnetic permeability In electromagnetism, permeability is the measure of magnetization that a material obtains in response to an applied magnetic field. Permeability is typically represented by the (italicized) Greek letter ''μ''. The term was coined by William ...
, ''μ''. Hence, by designing the individual,
geometrical Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ca ...
ly shaped unit of the material, called a cell, as the right kind of composite, it becomes a material with ''macroscopic properties that do not occur in nature''. Of particular interest regarding ''nonlinear metamaterials'', is the artificially induced macroscopic property known as
negative refractive index Negative-index metamaterial or negative-index material (NIM) is a metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range. NIMs are constructed of periodic basic parts called unit cells, whi ...
. This effect is created by
Negative index metamaterials Negative-index metamaterial or negative-index material (NIM) is a metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range. NIMs are constructed of periodic basic parts called unit cells, whi ...
(NIMs), which are
employed Employment is a relationship between two parties regulating the provision of paid labour services. Usually based on a contract, one party, the employer, which might be a corporation, a not-for-profit organization, a co-operative, or any oth ...
for use as ''nonlinear metamaterials''. In NIMs, nonlinear phenomena such as
second-harmonic generation Second-harmonic generation (SHG, also called frequency doubling) is a nonlinear optical process in which two photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with twice the energy of ...
and parametric amplification can take on highly unusual characteristics. Namely, the fact that the
wavevector In physics, a wave vector (or wavevector) is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave (inversely proportional to the wavelength), ...
and the
Poynting vector In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area per unit time) or '' power flow'' of an electromagnetic field. The SI unit of the Poynting vector is the watt ...
of a wave propagating in a NIM are counter-directed alters the
phase-matching Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in ''nonlinear media'', that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typica ...
conditions for the interacting waves, resulting in backward propagating waves as well as considerably changed Manley-Rowe relations and the distribution in space of the interacting fields' intensity.A.K. Popov and V.M.Shalaev
Negative-index metamaterials: second-harmonic generation, Manley-Rowe relations and parametric amplification
Applied Physics B, v. 84, pp. 131–37 (2006)


Non-linear properties of left-handed metamaterials

Previous studies of left-handed or
negative index metamaterials Negative-index metamaterial or negative-index material (NIM) is a metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range. NIMs are constructed of periodic basic parts called unit cells, whi ...
were focused on the linear properties of the medium during
wave propagation Wave propagation is any of the ways in which waves travel. Single wave propagation can be calculated by 2nd order wave equation ( standing wavefield) or 1st order one-way wave equation. With respect to the direction of the oscillation relative to ...
. In such cases, the view was that magnetic permeability and material permittivity are each not dependent on the intensity of the electromagnetic field. However, creating tunable structures requires knowledge of non-linear properties where the intensity of the
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
alters the permittivity, or permeability, or both, which in turn affects the range of transmission spectra or stop band spectra. Hence, the effective permeability is dependent on the
macroscopic The macroscopic scale is the length scale on which objects or phenomena are large enough to be visible with the naked eye, without magnifying optical instruments. It is the opposite of microscopic. Overview When applied to physical phenomena an ...
magnetic field intensity. As the field intensity is varied, switching between its positive and negative values can occur. Consequently, the material can switch from being left-handed to being right-handed, or vice versa. A composite structure consisting of a square lattice of the periodic arrays of conducting wires and split-ring resonators, produces an enhanced magnetic response. Without the correct magnetic response, it is not possible to produce a left-handed material.


Tunable split-ring resonators for nonlinear negative-index metamaterials

Variable capacitance diodes are incorporated into the split-ring cell producing a dynamic tunable system.


Reconfigurable refractive index (infrared)

Source radiation of near infrared
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
s are applied to a
metamaterial A metamaterial (from the Greek word μετά ''meta'', meaning "beyond" or "after", and the Latin word ''materia'', meaning "matter" or "material") is any material engineered to have a property that is not found in naturally occurring materials. ...
system. The
index of refraction In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
can be reconfigured to exhibit negative values, zero, or positive values.


SRR microwave nonlinear tunable metamaterial

Fabrication and
experiment An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into Causality, cause-and-effect by demonstrating what outcome oc ...
al studies of the properties of the ''first nonlinear tunable metamaterial'' were operating at
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ran ...
frequencies. Such a metamaterial was fabricated by modifying the properties of SRRs and introducing
varactor In electronics, a varicap diode, varactor diode, variable capacitance diode, variable reactance diode or tuning diode is a type of diode designed to exploit the voltage-dependent capacitance of a reverse-biased p–n junction. Applications Vara ...
diodes in each SRR element of the composite structure such that the whole structure becomes dynamically tunable by varying the
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of amplit ...
of the propagating
electromagnetic waves In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) lig ...
. In particular, the power dependent transmission of the left-handed and magnetic metamaterials at higher powers were demonstrated, as well as the generation of particular harmonics, as was
theoretical A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be s ...
ly suggested earlier.


SRR microwave nonlinear magnetic metamaterials

The fabrication and experimental studies of the properties of the''nonlinear tunable magnetic metamaterial'' were operating at microwave frequencies. Varactor diodes are symmetrically introduced, which results in dynamic tunability for the whole structure. Since the magnetic component of the interaction determines the application, the power dependency is demonstrated. Nonlinearity-dependent enhancement or suppression of the transmission turns out to be dynamically tunable.


SRR microwave nonlinear electric metamaterials

A new type of nonlinear metamaterials, is proposed and designed, exhibiting a resonant electric response at microwave frequencies. By introducing a varactor diode as a nonlinear element within each resonator, the frequency of the electric mode stop band is shifted by changing the incident power without affecting the magnetic response. These elements could be combined with the previously developed nonlinear magnetic metamaterials in order to create negative index media with a control over both electric and magnetic nonlinearities. Nonlinear resonators are designed in a similar fashion. A strong nonlinear electric response is obtained.


Sub-diffraction limit for non-linear metamaterial lens

By covering a thin flat nonlinear lens on the sources, the sub-diffraction-limit observation can be achieved by measuring either the near-field distribution or the far-field radiation of the sources at the harmonic frequencies and calculating the IFT to obtain the sub-wavelength imaging. The higher order harmonics are used, the higher resolution is obtained.


Non-linear electric metamaterial

A new type of nonlinear metamaterial is designed, and analyzed with a dominant negative electric response. Introducing nonlinearity into the electric response makes it tunable while leaving the magnetic response unchanged. A nonlinear NIM containing tunable electric and magnetic elements, which can respond independently is possible.


EM field shielding by non-linear metamaterials

It is well known that over certain frequencies, typical metals can reflect electromagnetic (EM) fields and can thus be used as electromagnetic shielding materials. However, conventional ''linear'' LHMs cannot be used to shield electromagnetic fields. This is drastically modified when nonlinearity of the magnetic response is taken into account, creating a controllable shielding effect in LHMs, accompanied by a parametric reflection.


Meta-dimer metamaterial

A meta-dimer is composed of two spatially separated SRRs, with the two SRRs identical in each unit cell. The proximity of the SRRs in the dimer results in relatively strong coupling between them. A metamaterial comprising a large number of such metadimers can be utilized as an actively tunable medium at optical wavelengths. If either or both of the SRRs in the meta-dimer become nonlinear, the metamaterial itself acquires nonlinear properties. This can allow for nonlinear behavior, such as tunability in real time
Stereometamaterials
are also a type of meta-dimer.


See also

*
History of metamaterials The history of metamaterials begins with artificial dielectrics in microwave engineering as it developed just after World War II. Yet, there are seminal explorations of artificial materials for manipulating electromagnetic waves at the end of the 1 ...
*
Negative index metamaterials Negative-index metamaterial or negative-index material (NIM) is a metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range. NIMs are constructed of periodic basic parts called unit cells, whi ...
*
Superlens A superlens, or super lens, is a lens (optics), lens which uses metamaterials to go beyond the diffraction limit. For example, in 1995, Guerra combined a transparent grating having 50nm lines and spaces (the "metamaterial") with a conventional micro ...
*
Metamaterial cloaking Metamaterial cloaking is the usage of metamaterials in an cloaking device, invisibility cloak. This is accomplished by manipulating the paths traversed by light through a novel optical material. Metamaterials direct and control the Wave propagati ...
*
Photonic metamaterials A photonic metamaterial (PM), also known as an optical metamaterial, is a type of electromagnetic metamaterial, that interacts with light, covering terahertz (Terahertz radiation, THz), infrared (IR) or visible wavelengths. The materials employ a ...
*
Metamaterial antennas Metamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized ( electrically small) antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space. However, ...
*
Photonic crystal A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of Crystal structure, natural crystals gives rise to X-ray crystallograp ...
*
Seismic metamaterials A seismic metamaterial, is a metamaterial that is designed to counteract the adverse effects of seismic waves on artificial structures, which exist on or near the surface of the earth. Current designs of seismic metamaterials utilize configurations ...
*
Split-ring resonator A split-ring resonator (SRR) is an artificially produced structure common to metamaterials. Its purpose is to produce the desired magnetic susceptibility (magnetic response) in various types of metamaterials up to 200 terahertz. These media cre ...
*
Acoustic metamaterials An acoustic metamaterial, sonic crystal, or phononic crystal, is a material designed to control, direct, and manipulate sound waves or phonons in gases, liquids, and solids ( crystal lattices). Sound wave control is accomplished through manipulat ...
*
Metamaterial absorber A metamaterial absorber is a type of metamaterial intended to efficiently absorb electromagnetic radiation such as light. Furthermore, metamaterials are an advance in materials science. Hence, those metamaterials that are designed to be absorbers ...
*
Metamaterial A metamaterial (from the Greek word μετά ''meta'', meaning "beyond" or "after", and the Latin word ''materia'', meaning "matter" or "material") is any material engineered to have a property that is not found in naturally occurring materials. ...
*
Plasmonic metamaterials A plasmonic metamaterial is a metamaterial that uses surface plasmons to achieve optical properties not seen in nature. Plasmons are produced from the interaction of light with metal-dielectric materials. Under specific conditions, the incident ligh ...
*
Terahertz metamaterials A terahertz metamaterial is a class of composite metamaterials designed to interact at Terahertz radiation, terahertz (THz) frequencies. The terahertz frequency range used in materials science, materials research is usually defined as 0.1 to 10 Ter ...
*
Tunable metamaterials A tunable metamaterial is a metamaterial with a variable response to an incident electromagnetic wave. This includes remotely controlling how an incident electromagnetic wave (EM wave) interacts with a metamaterial. This translates into the capabi ...
*
Transformation optics Transformation optics is a branch of optics which applies metamaterials to produce spatial variations, derived from coordinate transformations, which can direct chosen bandwidths of electromagnetic radiation. This can allow for the construction ...
*
Theories of cloaking Theories of cloaking discusses various theories based on science and research, for producing an electromagnetic cloaking device. Theories presented employ transformation optics, event cloaking, dipolar scattering cancellation, tunneling light tran ...
::::Academic journals *
Metamaterials (journal) ''Metamaterials'' was a peer-reviewed scientific journal that was established in March 2007. It was published by Elsevier in association with the Metamorphose Network of Excellence. The coordinating editor was Mikhail Lapine. The journal was publ ...
::::Metamaterials books *
Metamaterials Handbook ''Metamaterials Handbook'' is a two-volume handbook on metamaterials edited by Filippo Capolino (University of California). The series is designed to cover all theory and application topics related to electromagnetic metamaterials. Disciplin ...
* Metamaterials: Physics and Engineering Explorations Metamaterials scientists *
John Pendry Sir John Brian Pendry, (born 4 July 1943) is an English theoretical physicist known for his research into refractive indices and creation of the first practical "Invisibility, Invisibility Cloak". He is a professor of theoretical solid state ph ...
* David R. Smith * Richard W. Ziolkowski *
Nader Engheta Nader Engheta ( fa, نادر انقطاع) (born 1955 in Tehran) is an Iranian- American scientist. He has made pioneering contributions to the fields of metamaterials, transformation optics, plasmonic optics, nanophotonics, graphene photonics, ...
*Ulf Leonhardt * Vladimir Shalaev


References


Further reading

* * *{{cite journal , doi=10.1117/2.1200811.1390 , url=http://spie.org/x31810.xml?ArticleID=x31810 , format=Free online article from
SPIE SPIE (formerly the Society of Photographic Instrumentation Engineers, later the Society of Photo-Optical Instrumentation Engineers) is an international not-for-profit professional society for optics and photonics technology, founded in 1955. It ...
, title=Nonlinear metamaterials: a new degree of freedom , year=2008 , last1=Shadrivov , first1=Ilya , journal=SPIE Newsroom, citeseerx=10.1.1.497.6901 Electric and magnetic fields in matter Metamaterials