Niobium-93
   HOME

TheInfoList



OR:

Naturally occurring niobium (41Nb) is composed of one stable
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
(93Nb). The most stable
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
is 92Nb with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of 34.7 million years. The next longest-lived niobium isotopes are 94Nb (half-life: 20,300 years) and 91Nb with a half-life of 680 years. There is also a
meta state A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy higher energy levels than in the ground state of the same nucleus. "Metastable" describes nuclei whose excited states have ...
of 93Nb at 31
keV Kev can refer to: Given name * Kev Adams, French comedian, actor, screenwriter and film producer born Kevin Smadja in 1991 * Kevin Kev Carmody (born 1946), Indigenous Australian singer-songwriter * Kev Coghlan (born 1988), Scottish Grand Prix moto ...
whose half-life is 16.13 years. Twenty-seven other radioisotopes have been characterized. Most of these have half-lives that are less than two hours, except 95Nb (35 days), 96Nb (23.4 hours) and 90Nb (14.6 hours). The primary decay mode before stable 93Nb is
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Thi ...
and the primary mode after is
beta emission In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For exam ...
with some
neutron emission Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a nucleus. It occurs in the most neutron-rich/proton-deficient nuclides, and also from excited states of other nuclides as in photoneutron emission and ...
occurring in 104–110Nb. Only 95Nb (35 days) and 97Nb (72 minutes) and heavier isotopes (half-lives in seconds) are fission products in significant quantity, as the other isotopes are shadowed by stable or very long-lived ( 93Zr) isotopes of the preceding element
zirconium Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'' ...
from production via
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
of neutron-rich
fission fragment Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the releas ...
s. 95Nb is the decay product of 95Zr (64 days), so disappearance of 95Nb in
used nuclear fuel Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and ...
is slower than would be expected from its own 35-day half-life alone. Small amounts of other isotopes may be produced as direct fission products.


List of isotopes

, - , rowspan=3, 81Nb , rowspan=3 style="text-align:right" , 41 , rowspan=3 style="text-align:right" , 40 , rowspan=3, 80.94903(161)# , rowspan=3, <44 ns , β+, p , 80Y , rowspan=3, 3/2−# , rowspan=3, , rowspan=3, , - , p , 80Zr , - , β+ , 81Zr , - , 82Nb , style="text-align:right" , 41 , style="text-align:right" , 41 , 81.94313(32)# , 51(5) ms , β+ , 82Zr , 0+ , , , - , 83Nb , style="text-align:right" , 41 , style="text-align:right" , 42 , 82.93671(34) , 4.1(3) s , β+ , 83Zr , (5/2+) , , , - , rowspan=2, 84Nb , rowspan=2 style="text-align:right" , 41 , rowspan=2 style="text-align:right" , 43 , rowspan=2, 83.93357(32)# , rowspan=2, 9.8(9) s , β+ (>99.9%) , 84Zr , rowspan=2, 3+ , rowspan=2, , rowspan=2, , - , β+, p (<.1%) , 83Y , - , style="text-indent:1em" , 84mNb , colspan="3" style="text-indent:2em" , 338(10) keV , 103(19) ns , , , (5−) , , , - , 85Nb , style="text-align:right" , 41 , style="text-align:right" , 44 , 84.92791(24) , 20.9(7) s , β+ , 85Zr , (9/2+) , , , - , style="text-indent:1em" , 85mNb , colspan="3" style="text-indent:2em" , 759.0(10) keV , 12(5) s , , , (1/2−) , , , - , 86Nb , style="text-align:right" , 41 , style="text-align:right" , 45 , 85.92504(9) , 88(1) s , β+ , 86Zr , (6+) , , , - , style="text-indent:1em" , 86mNb , colspan="3" style="text-indent:2em" , 250(160)# keV , 56(8) s , β+ , 86Zr , high , , , - , 87Nb , style="text-align:right" , 41 , style="text-align:right" , 46 , 86.92036(7) , 3.75(9) min , β+ , 87Zr , (1/2−) , , , - , style="text-indent:1em" , 87mNb , colspan="3" style="text-indent:2em" , 3.84(14) keV , 2.6(1) min , β+ , 87Zr , (9/2+)# , , , - , 88Nb , style="text-align:right" , 41 , style="text-align:right" , 47 , 87.91833(11) , 14.55(6) min , β+ , 88Zr , (8+) , , , - , style="text-indent:1em" , 88mNb , colspan="3" style="text-indent:2em" , 40(140) keV , 7.8(1) min , β+ , 88Zr , (4−) , , , - , 89Nb , style="text-align:right" , 41 , style="text-align:right" , 48 , 88.913418(29) , 2.03(7) h , β+ , 89Zr , (9/2+) , , , - , style="text-indent:1em" , 89mNb , colspan="3" style="text-indent:2em" , 0(30)# keV , 1.10(3) h , β+ , 89Zr , (1/2)− , , , - , 90Nb , style="text-align:right" , 41 , style="text-align:right" , 49 , 89.911265(5) , 14.60(5) h , β+ , 90Zr , 8+ , , , - , style="text-indent:1em" , 90m1Nb , colspan="3" style="text-indent:2em" , 122.370(22) keV , 63(2) μs , , , 6+ , , , - , style="text-indent:1em" , 90m2Nb , colspan="3" style="text-indent:2em" , 124.67(25) keV , 18.81(6) s , IT , 90Nb , 4- , , , - , style="text-indent:1em" , 90m3Nb , colspan="3" style="text-indent:2em" , 171.10(10) keV , <1 μs , , , 7+ , , , - , style="text-indent:1em" , 90m4Nb , colspan="3" style="text-indent:2em" , 382.01(25) keV , 6.19(8) ms , , , 1+ , , , - , style="text-indent:1em" , 90m5Nb , colspan="3" style="text-indent:2em" , 1880.21(20) keV , 472(13) ns , , , (11−) , , , - , rowspan=2, 91Nb , rowspan=2 style="text-align:right" , 41 , rowspan=2 style="text-align:right" , 50 , rowspan=2, 90.906996(4) , rowspan=2, 680(130) a , EC (99.98%) , 91Zr , rowspan=2, 9/2+ , rowspan=2, , rowspan=2, , - , β+ (.013%) , 91Zr , - , rowspan=3 style="text-indent:1em" , 91m1Nb , rowspan=3 colspan="3" style="text-indent:2em" , 104.60(5) keV , rowspan=3, 60.86(22) d , IT (93%) , 91Nb , rowspan=3, 1/2− , rowspan=3, , rowspan=3, , - , EC (7%) , 91Zr , - , β+ (.0028%) , 91Zr , - , style="text-indent:1em" , 91m2Nb , colspan="3" style="text-indent:2em" , 2034.35(19) keV , 3.76(12) μs , , , (17/2−) , , , - , rowspan=2, 92Nb , rowspan=2 style="text-align:right" , 41 , rowspan=2 style="text-align:right" , 51 , rowspan=2, 91.907194(3) , rowspan=2, 3.47(24)×107 a , β+ (99.95%) , 92Zr , rowspan=2, (7)+ , rowspan=2, , rowspan=2, , - , β (.05%) , 92Mo , - , style="text-indent:1em" , 92m1Nb , colspan="3" style="text-indent:2em" , 135.5(4) keV , 10.15(2) d , β+ , 92Zr , (2)+ , , , - , style="text-indent:1em" , 92m2Nb , colspan="3" style="text-indent:2em" , 225.7(4) keV , 5.9(2) μs , , , (2)− , , , - , style="text-indent:1em" , 92m3Nb , colspan="3" style="text-indent:2em" , 2203.3(4) keV , 167(4) ns , , , (11−) , , , - , 93Nb , style="text-align:right" , 41 , style="text-align:right" , 52 , 92.9063781(26) , colspan=3 align=center, StableTheoretically capable of spontaneous fission, lightest nuclide so capable , 9/2+ , 1.0000 , , - , style="text-indent:1em" , 93mNb , colspan="3" style="text-indent:2em" , 30.77(2) keV , 16.13(14) a , IT , 93Nb , 1/2− , , , - , 94Nb , style="text-align:right" , 41 , style="text-align:right" , 53 , 93.9072839(26) , 2.03(16)×104 a , β , 94Mo , (6)+ , , , - , rowspan=2 style="text-indent:1em" , 94mNb , rowspan=2 colspan="3" style="text-indent:2em" , 40.902(12) keV , rowspan=2, 6.263(4) min , IT (99.5%) , 94Nb , rowspan=2, 3+ , rowspan=2, , rowspan=2, , - , β (.5%) , 94Mo , - , 95Nb , style="text-align:right" , 41 , style="text-align:right" , 54 , 94.9068358(21) , 34.991(6) d , β , 95Mo , 9/2+ , , , - , rowspan=2 style="text-indent:1em" , 95mNb , rowspan=2 colspan="3" style="text-indent:2em" , 235.690(20) keV , rowspan=2, 3.61(3) d , IT (94.4%) , 95Nb , rowspan=2, 1/2− , rowspan=2, , rowspan=2, , - , β (5.6%) , 95Mo , - , 96Nb , style="text-align:right" , 41 , style="text-align:right" , 55 , 95.908101(4) , 23.35(5) h , β , 96Mo , 6+ , , , - , 97Nb , style="text-align:right" , 41 , style="text-align:right" , 56 , 96.9080986(27) , 72.1(7) min , β , 97Mo , 9/2+ , , , - , style="text-indent:1em" , 97mNb , colspan="3" style="text-indent:2em" , 743.35(3) keV , 52.7(18) s , IT , 97Nb , 1/2− , , , - , 98Nb , style="text-align:right" , 41 , style="text-align:right" , 57 , 97.910328(6) , 2.86(6) s , β , 98Mo , 1+ , , , - , rowspan=2 style="text-indent:1em" , 98mNb , rowspan=2 colspan="3" style="text-indent:2em" , 84(4) keV , rowspan=2, 51.3(4) min , β (99.9%) , 98Mo , rowspan=2, (5+) , rowspan=2, , rowspan=2, , - , IT (.1%) , 98Nb , - , 99Nb , style="text-align:right" , 41 , style="text-align:right" , 58 , 98.911618(14) , 15.0(2) s , β , 99Mo , 9/2+ , , , - , rowspan=2 style="text-indent:1em" , 99mNb , rowspan=2 colspan="3" style="text-indent:2em" , 365.29(14) keV , rowspan=2, 2.6(2) min , β (96.2%) , 99Mo , rowspan=2, 1/2− , rowspan=2, , rowspan=2, , - , IT (3.8%) , 99Nb , - , 100Nb , style="text-align:right" , 41 , style="text-align:right" , 59 , 99.914182(28) , 1.5(2) s , β , ''100Mo'' , 1+ , , , - , style="text-indent:1em" , 100mNb , colspan="3" style="text-indent:2em" , 470(40) keV , 2.99(11) s , β , ''100Mo'' , (4+, 5+) , , , - , 101Nb , style="text-align:right" , 41 , style="text-align:right" , 60 , 100.915252(20) , 7.1(3) s , β , 101Mo , (5/2#)+ , , , - , 102Nb , style="text-align:right" , 41 , style="text-align:right" , 61 , 101.91804(4) , 1.3(2) s , β , 102Mo , 1+ , , , - , style="text-indent:1em" , 102mNb , colspan="3" style="text-indent:2em" , 130(50) keV , 4.3(4) s , β , 102Mo , high , , , - , 103Nb , style="text-align:right" , 41 , style="text-align:right" , 62 , 102.91914(7) , 1.5(2) s , β , 103Mo , (5/2+) , , , - , rowspan=2, 104Nb , rowspan=2 style="text-align:right" , 41 , rowspan=2 style="text-align:right" , 63 , rowspan=2, 103.92246(11) , rowspan=2, 4.9(3) s , β (99.94%) , 104Mo , rowspan=2, (1+) , rowspan=2, , rowspan=2, , - , β, n (.06%) , 103Mo , - , rowspan=2 style="text-indent:1em" , 104mNb , rowspan=2 colspan="3" style="text-indent:2em" , 220(120) keV , rowspan=2, 940(40) ms , β (99.95%) , 104Mo , rowspan=2, high , rowspan=2, , rowspan=2, , - , β, n (.05%) , 103Mo , - , rowspan=2, 105Nb , rowspan=2 style="text-align:right" , 41 , rowspan=2 style="text-align:right" , 64 , rowspan=2, 104.92394(11) , rowspan=2, 2.95(6) s , β (98.3%) , 105Mo , rowspan=2, (5/2+)# , rowspan=2, , rowspan=2, , - , β, n (1.7%) , 104Mo , - , rowspan=2, 106Nb , rowspan=2 style="text-align:right" , 41 , rowspan=2 style="text-align:right" , 65 , rowspan=2, 105.92797(21)# , rowspan=2, 920(40) ms , β (95.5%) , 106Mo , rowspan=2, 2+# , rowspan=2, , rowspan=2, , - , β, n (4.5%) , 105Mo , - , rowspan=2, 107Nb , rowspan=2 style="text-align:right" , 41 , rowspan=2 style="text-align:right" , 66 , rowspan=2, 106.93031(43)# , rowspan=2, 300(9) ms , β (94%) , 107Mo , rowspan=2, 5/2+# , rowspan=2, , rowspan=2, , - , β, n (6%) , 106Mo , - , rowspan=2, 108Nb , rowspan=2 style="text-align:right" , 41 , rowspan=2 style="text-align:right" , 67 , rowspan=2, 107.93484(32)# , rowspan=2, 0.193(17) s , β (93.8%) , 108Mo , rowspan=2, (2+) , rowspan=2, , rowspan=2, , - , β, n (6.2%) , 107Mo , - , rowspan=2, 109Nb , rowspan=2 style="text-align:right" , 41 , rowspan=2 style="text-align:right" , 68 , rowspan=2, 108.93763(54)# , rowspan=2, 190(30) ms , β (69%) , 109Mo , rowspan=2, 5/2+# , rowspan=2, , rowspan=2, , - , β, n (69%) , 108Mo , - , rowspan=2, 110Nb , rowspan=2 style="text-align:right" , 41 , rowspan=2 style="text-align:right" , 69 , rowspan=2, 109.94244(54)# , rowspan=2, 170(20) ms , β (60%) , 110Mo , rowspan=2, 2+# , rowspan=2, , rowspan=2, , - , β, n (40%) , 109Mo , - , 111Nb , style="text-align:right" , 41 , style="text-align:right" , 70 , 110.94565(54)# , 80# ms 300 ns, , , 5/2+# , , , - , 112Nb , style="text-align:right" , 41 , style="text-align:right" , 71 , 111.95083(75)# , 60# ms 300 ns, , , 2+# , , , - , 113Nb , style="text-align:right" , 41 , style="text-align:right" , 72 , 112.95470(86)# , 30# ms 300 ns, , , 5/2+# , , , - , 114Nb , style="text-align:right" , 41 , style="text-align:right" , 73 , , , , , , , , - , 115Nb , style="text-align:right" , 41 , style="text-align:right" , 74 , , , , , , , , - , 116Nb , style="text-align:right" , 41 , style="text-align:right" , 75 , , , , , , , , - , 117Nb , style="text-align:right" , 41 , style="text-align:right" , 76 , , , , , , ,


Niobium-92

Niobium-92 is an
extinct radionuclide An extinct radionuclide is a radionuclide that was formed by nucleosynthesis before the formation of the Solar System, about 4.6 billion years ago, but has since decayed to virtually zero abundance and is no longer detectable as a primordial nuc ...
with a half-life of 34.7 million years, decaying predominantly via β+ decay. Its abundance relative to the stable 93Nb in the early Solar System, estimated at 1.7×10−5, has been measured to investigate the origin of
p-nuclei p-nuclei (''p'' stands for proton-rich) are certain proton-rich, naturally occurring isotopes of some elements between selenium and mercury inclusive which cannot be produced in either the s- or the r-process. Definition The classical, gro ...
. This isotope, along with 94Nb, has been detected in refined samples of terrestrial niobium and may originate from bombardment by
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
muons in Earth's crust.


References

* Isotope masses from: ** * Isotopic compositions and standard atomic masses from: ** ** * Half-life, spin, and isomer data selected from the following sources. ** ** ** {{Authority control Niobium Niobium