The Info List - Nicotinamide

--- Advertisement ---

(NAA), also known as niacinamide, is a vitamin found in food, used as a dietary supplement, and used as a medication.[3][4][5] As a supplement, it is used by mouth to prevent and treat pellagra (niacin deficiency).[4] While nicotinic acid (niacin) may be used for this purpose, nicotinamide has the benefit of not causing skin flushing.[4] As a cream, it is used to treat acne.[5] Side effects are minimal.[6][7] At high doses liver problems may occur.[6] Normal amounts are safe for use during pregnancy.[1] Nicotinamide
is in the vitamin B family of medications, specifically the vitamin B3 complex.[8][9] It is an amide of nicotinic acid.[6] Foods that contain nicotinamide include yeast, meat, milk, and green vegetables.[10] Nicotinamide
was discovered between 1935 and 1937.[11][12] It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system.[13] Nicotinamide
is available as a generic medication and over the counter.[8] In the United Kingdom a 60 g tube costs the NHS
about £7.10.[5] Commercially nicotinamide is made from either nicotinic acid or 3-cyanopyridine.[12][14] In a number of countries grains have nicotinamide added to them.[12]


1 Medical uses

1.1 Niacin
deficiency 1.2 Acne

2 Side effects 3 Chemistry

3.1 Biological importance 3.2 Industrial production

4 Biochemistry 5 Food sources 6 Compendial status 7 Research 8 See also 9 References 10 External links

Medical uses[edit] Niacin
deficiency[edit] Nicotinamide
is the preferred treatment for niacin deficiency (pellagra).[4] A patient's diagnosis of pellagra is based on their history, as well as a presence of dermatitis, diarrhea, and dementia.[15] While nicotinic acid (niacin) may be used, nicotinamide has the benefit of not causing skin flushing.[4] Acne[edit] Nicotinamide
in the form of a cream is used as a treatment for acne.[5] It has anti-inflammatory actions. These may be of benefit to people with inflammatory skin conditions.[16] Nicotinamide
increases the biosynthesis of ceramides in human keratinocytes in vitro and improves the epidermal permeability barrier in vivo.[17] The application of 2% topical nicotinamide for 2 and 4 weeks has been found to be effective in lowering the sebum excretion rate in study participants.[18] Nictotinamide has been shown to prevent Propionibacterium acnes-induced activation of toll-like receptor (TLR)-2, which ultimately results in the down-regulation of pro-inflammatory IL-8 production.[19] Side effects[edit] Side effects are minimal.[6][7] At high doses liver problems may occur.[6] Normal amounts are safe for use during pregnancy.[1] Chemistry[edit] The structure of nicotinamide consists of a pyridine ring to which a primary amide group is attached in the meta position. It is an amide of nicotinic acid.[6] As an aromatic compound, it undergoes electrophilic substitution reactions and transformations of its two functional groups. Examples of these reactions reported in Organic Syntheses include the preparation of 2-chloronicotinonitrile by a two-step process via the N-oxide,[20][21]

from nicotinonitrile by reaction with phosphorus pentoxide,[22] and from 3-aminopyridine
by reaction with a solution of sodium hypobromite, prepared in situ from bromine and sodium hydroxide.[23] Biological importance[edit]

NAD+, the oxidised form of NADH, contains the nicotinamide moiety (circled in red)

occurs as a component of a variety of biological systems, including within the vitamin B family and specifically the vitamin B3 complex.[8][9] It is also a critically important part of the structures of NADH and NAD+, where the N-substituted aromatic ring in the oxidised NAD+ form undergoes reduction with hydride attack to form NADH.[24] The NADPH/NADP+ structures have the same ring, and are involved in similar biochemical reactions. Industrial production[edit] The hydrolysis of 3-cyanopyridine (nicotinonitrile) is catalysed by the enzyme nitrile hydratase from Rhodococcus rhodochrous J1,[25][26][14] producing 3500 tons per annum of nicotinamide for use in animal feed.[27] The enzyme allows for a more selective synthesis as further hydrolysis of the amide to nicotinic acid is avoided.[28][29] Nicotinamide
can also be made from nicotinic acid. According to Ullmann's Encyclopedia of Industrial Chemistry, worldwide sales of nicotinamide were 31,000 tons in 2014.[12] Biochemistry[edit]

The active Nicotinamide
group on the molecule NAD+ undergoes oxidation in many metabolic pathways.

Nicotinamide, as a part of the coenzyme nicotinamide adenine dinucleotide (NADH / NAD+) is crucial to life. In cells, nicotinamide is incorporated into NAD+ and nicotinamide adenine dinucleotide phosphate (NADP+). NAD+ and NADP+ are coenzymes in a wide variety of enzymatic oxidation-reduction reactions the most notable being glycolysis, the citric acid cycle, and the electron transport chain.[24] If humans ingest nicotinamide, it will likely undergo a series of reactions that transform it into NAD, which can then undergo a transformation to form NADP+. This method of creation of NAD+ is called a salvage pathway. However, the human body can produce NAD+ from the amino acid tryptophan and niacin without our ingestion of nicotinamide.[30] NAD+ acts as an electron carrier that helps with the interconversion of energy between nutrients and the cell's energy currency, ATP. In oxidation-reduction reactions, the active part of the coenzyme is the nicotinamide. In NAD+, the nitrogen in the aromatic nicotinamide ring is covalently bonded to adenine dinucleotide. The formal charge on the nitrogen is stabilized by the shared electrons of the other carbon atoms in the aromatic ring. When a hydride atom is added onto NAD+ to form NADH, the molecule loses its aromaticity, and therefore a good amount of stability. This higher energy product later releases its energy with the release of a hydride, and in the case of the electron transport chain, it assists in forming adenosine triphosphate.[31] For every one mole of NADH that is oxidized, 158.2 kJ of energy will be released.[31] Food sources[edit] Nicotinamide
occurs in trace amounts mainly in meat, fish, nuts, and mushrooms, as well as to a lesser extent in some vegetables.[32] It is commonly added to cereals and other foods. If one would want to take it orally, it is present in many multivitamins, and there are around 20–30 mg in each. It is also available as a standalone vitamin, in much higher quantities around 500 mg.[33] Compendial status[edit]

British Pharmacopoeia[34] Japanese Pharmacopoeia[35]

Research[edit] It has been investigated for many disorders, including treatment of bullous pemphigoid nonmelanoma skin cancers.[36] There is also tentative evidence for its effective use to treat autoimmune blistering disorders, acne, rosacea, ageing skin and atopic dermatitis.[36] Niacinamide also inhibits poly(ADP-ribose) polymerases (PARP-1), enzymes involved in the rejoining of DNA strand breaks induced by radiation or chemotherapy.[37] Niacinamide may beneficial in treating psoriasis.[38] Nicotinamide
can prevent and even reverse the progression of glaucoma in mice and slows, or even stops damage to retinal ganglion cells and their axons in the optic nerve.[39] A 2015 trial found that for people at high risk, nicotinamide reduces the rate of new nonmelanoma skin cancers and actinic keratoses.[40] Nicotinamide
may be converted by the body back to tryptophan and this is the raw material for the pathway that includes 5-HTP, serotonin and melatonin. This pathway will have profound effects on mood and sleep. So, for example, tryptophan and 5-HTP
are very effective in the management of depression. Melatonin
is a sleep hormone. Some doctors talk about using nicotinamide or niacinamide supplements to help patients to get good sleep. See also[edit]

Isonicotinamide Nicotinamide


^ a b c "Niacinamide Use During Pregnancy". Drugs.com. Archived from the original on December 30, 2016. Retrieved December 29, 2016.  ^ Record in the GESTIS Substance Database of the Institute for Occupational Safety and Health ^ Bender, David A. (2003). Nutritional Biochemistry of the Vitamins. Cambridge University Press. p. 203. ISBN 978-1-139-43773-8. Archived from the original on 2016-12-30.  ^ a b c d e WHO Model Formulary 2008 (PDF). World Health Organization. 2009. pp. 496, 500. ISBN 978-924-154765-9. Archived (PDF) from the original on December 13, 2016. Retrieved December 8, 2016.  ^ a b c d British National Formulary: BNF 69 (69th ed.). British Medical Association. 2015. p. 822. ISBN 978-0-85711-156-2.  ^ a b c d e f Knip, M.; Douek, I. F.; Moore, W. P.; Gillmor, H. A.; McLean, A. E.; Bingley, P. J.; Gale, E. A. (2000). "Safety of high-dose nicotinamide: A review". Diabetologia. 43 (11): 1337–1345. doi:10.1007/s001250051536. PMID 11126400.  ^ a b MacKay, D.; Hathcock, J.; Guarneri, E. (2012). "Niacin: Chemical forms, bioavailability, and health effects". Nutrition Reviews. 70 (6): 357–366. doi:10.1111/j.1753-4887.2012.00479.x. PMID 22646128.  ^ a b c "Niacinamide: Indications, Side Effects, Warnings". Drugs.com. June 6, 2017. Archived from the original on August 5, 2017. Retrieved June 30, 2017.  ^ a b Krutmann, Jean; Humbert, Philippe (2010). Nutrition for Healthy Skin: Strategies for Clinical and Cosmetic Practice. Springer Science & Business Media. p. 153. ISBN 9783642122644. Archived from the original on 2017-04-10.  ^ Burtis, Carl A.; Ashwood, Edward R.; Bruns, David E. (2012). Tietz Textbook of Clinical Chemistry and Molecular Diagnostics (5th ed.). Elsevier Health Sciences. p. 934. ISBN 978-1-4557-5942-2. Archived from the original on 2016-12-30.  ^ Sneader, Walter (2005). Drug Discovery: A History. John Wiley & Sons. p. 231. ISBN 978-0-470-01552-0. Archived from the original on 2016-12-30.  ^ a b c d Blum, René (2015). "Vitamins, 11. Niacin
(Nicotinic Acid, Nicotinamide". Ullmann's Encyclopedia of Industrial Chemistry (6th ed.). Weinheim: Wiley-VCH. doi:10.1002/14356007.o27_o14.pub2. ISBN 978-3-527-30385-4.  ^ " WHO Model List of Essential Medicines
WHO Model List of Essential Medicines
(19th List)" (PDF). WHO Model List of Essential Medicines. World Health Organization. 2015. Archived (PDF) from the original on December 13, 2016. Retrieved December 8, 2016.  ^ a b Schmidberger, J. W.; Hepworth, L. J.; Green, A. P.; Flitsch, S. L. (2015). "Enzymatic Synthesis of Amides". In Faber, Kurt; Fessner, Wolf-Dieter; Turner, Nicholas J. Biocatalysis in Organic Synthesis 1. Science of Synthesis. Georg Thieme Verlag. pp. 329–372. Archived from the original on 2017-11-05.  ^ Pitche, Palokinam T. (2005). "Pellagre et érythèmes pellagroïdes" (PDF). Cahiers Santé (in French). 15 (3): 205–208. PMID 16207585.  ^ Niren, N. M. (2006). "Pharmacologic doses of nicotinamide in the treatment of inflammatory skin conditions: A review". Cutis. 77 (1 (Supplement: Nicotinamide
and Zinc in the Treatment of Acne
and Rosacea)): 11–16. PMID 16871774.  ^ Tanno, O.; Ota, Y.; Kitamura, N.; Katsube, T.; Inoue, S. (2000). " Nicotinamide
increases biosynthesis of ceramides as well as other stratum corneum lipids to improve the epidermal permeability barrier". The British Journal of Dermatology. 143 (3): 524–531. doi:10.1111/j.1365-2133.2000.03705.x. PMID 10971324.  ^ Draelos, Z. D.; Matsubara, A.; Smiles, K. (2006). "The effect of 2% niacinamide on facial sebum production". Journal of Cosmetic and Laser Therapy. 8 (2): 96–101. doi:10.1080/14764170600717704. PMID 16766489.  ^ Kim, J.; Ochoa, M. T.; Krutzik, S. R.; Takeuchi, O.; Uematsu, S.; Legaspi, A. J.; Brightbill, H. D.; Holland, D.; Cunliffe, W. J.; Akira, S.; Sieling, P. A.; Godowski, P. J.; Modlin, R. L. (2002). "Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses". Journal of Immunology. 169 (3): 1535–1541. doi:10.4049/jimmunol.169.3.1535. PMC 4636337 . PMID 12133981.  ^ Taylor, E. C.; Crovetti, Aldo J. (1957). "Nicotinamide-1-oxide". Organic Syntheses. 37: 63. doi:10.15227/orgsyn.037.0063. ; Collective Volume, 4, p. 704  ^ Taylor, E. C.; Crovetti, Aldo J. (1957). "2-Chloronicitinonitrile". Organic Syntheses. 37: 12. doi:10.15227/orgsyn.037.0012. ; Collective Volume, 4, p. 166  ^ Teague, Peyton C.; Short, William A. (1953). "Nicotinonitrile". Organic Syntheses. 33: 52. doi:10.15227/orgsyn.033.0052. ; Collective Volume, 4, p. 706  ^ Allen, C. F. H.; Wolf, Calvin N. (1950). "3-Aminopyridine". Organic Syntheses. 30: 3. doi:10.15227/orgsyn.030.0003. ; Collective Volume, 4, p. 45  ^ a b Belenky, P.; Bogan, K. L.; Brenner, C. (2007). "NAD+ metabolism in health and disease" (PDF). Trends in Biochemical Sciences. 32 (1): 12–19. doi:10.1016/j.tibs.2006.11.006. PMID 17161604. Archived (PDF) from the original on 2007-09-27.  ^ Nagasawa, Toru; Mathew, Caluwadewa Deepal; Mauger, Jacques; Yamada, Hideaki (1988). "Nitrile Hydratase-Catalyzed Production of Nicotinamide
from 3-Cyanopyridine in Rhodococcus rhodochrous J1". Appl. Environ. Microbiol. 54 (7): 1766–1769. Archived from the original on 2017-11-05.  ^ Ulber, Roland; Sell, Dieter, eds. (2007). "Building Blocks". White Biotechnology. Advances in Biochemical Engineering / Biotechnology. 105. Springer Science & Business Media. pp. 133–173. doi:10.1007/10_033. ISBN 9783540456957. Archived from the original on 2017-11-05.  ^ Asano, Y. (2015). "Hydrolysis of Nitriles to Amides". In Faber, Kurt; Fessner, Wolf-Dieter; Turner, Nicholas J. Biocatalysis in Organic Synthesis 1. Science of Synthesis. Georg Thieme Verlag. pp. 255–276. Archived from the original on 2017-11-05.  ^ Petersen, Michael; Kiener, Andreas (1999). "Biocatalysis". Green Chem. 1 (2): 99–106. doi:10.1039/A809538H.  ^ Servi, S.; Tessaro, D.; Hollmann, F. (2015). "Historical Perspectives: Paving the Way for the Future". In Faber, Kurt; Fessner, Wolf-Dieter; Turner, Nicholas J. Biocatalysis in Organic Synthesis 1. Science of Synthesis. Georg Thieme Verlag. pp. 1–39. Archived from the original on 2017-11-05.  ^ Williams, A. C.; Cartwright, L. S.; Ramsden, D. B. (2015). "Parkinson's disease: The first common neurological disease due to auto-intoxication?". QJM. 98 (3): 215–226. doi:10.1093/qjmed/hci027. PMID 15728403.  ^ a b Casiday, Rachel; Herman, Carolyn; Frey, Regina (September 5, 2008). "Energy for the Body: Oxidative Phosphorylation". www.chemistry.wustl.edu. Department of Chemistry, Washington University in St. Louis. Archived from the original on November 22, 2016. Retrieved March 14, 2017.  ^ Rolfe, Heidi M. (2014). "A review of nicotinamide: Treatment of skin diseases and potential side effects". Journal of Cosmetic Dermatology. 13 (4): 324–328. doi:10.1111/jocd.12119. PMID 25399625.  ^ Ranaweera, Anoma (2017). "Nicotinamide". DermNet New Zealand (www.dermnetnz.org). DermNet New Zealand Trust. Archived from the original on March 25, 2017. Retrieved June 30, 2017.  ^ British Pharmacopoeia Commission Secretariat (2009). Index, BP 2009 (PDF). Archived from the original (PDF) on July 22, 2011. Retrieved February 4, 2010.  ^ Japanese Pharmacopoeia (PDF) (15th ed.). 2006. Archived from the original (PDF) on July 22, 2011. Retrieved February 4, 2010.  ^ a b Chen, Andrew C.; Damian, Diona L. (2014). " Nicotinamide
and the skin". Australasian Journal of Dermatology. 55 (3): 169–175. doi:10.1111/ajd.12163. PMID 24635573.  ^ "Definition of niacinamide". NCI Drug Dictionary. National Cancer Institute. Archived from the original on April 28, 2015. Retrieved June 30, 2017.  ^ Namazi, Mohammad Reza (2003). "Nicotinamide: A potential addition to the anti-psoriatic weaponry". The FASEB Journal. 17 (11): 1377–1379. doi:10.1096/fj.03-0002hyp. PMID 12890690.  ^ Williams, Pete A.; Harder, Jeffrey M.; Foxworth, Nicole E.; Cochran, Kelly E.; Philip, Vivek M.; Porciatti, Vittorio; Smithies, Oliver; John, Simon W. M. (2017). " Vitamin
B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice". Science. 355 (6326): 756–760. doi:10.1126/science.aal0092. PMC 5408298 . PMID 28209901.  ^ Minocha, R; Damian, DL; Halliday, GM (5 July 2017). "Melanoma and nonmelanoma skin cancer chemoprevention: A role for nicotinamide?". Photodermatology, photoimmunology & photomedicine. doi:10.1111/phpp.12328. PMID 28681504. 

External links[edit]

DrugBank.ca Drug Card for Nicotinamide

v t e

Vitamins (A11)

Fat soluble


α-Carotene β-Carotene Retinol# Tretinoin



Ergosterol Ergocalciferol#


7-Dehydrocholesterol Previtamin D3 Cholecalciferol# 25-hydroxycholecalciferol Calcitriol
(1,25-dihydroxycholecalciferol) Calcitroic acid



D5 D analogues

Alfacalcidol Dihydrotachysterol Calcipotriol Tacalcitol Paricalcitol



Alpha Beta Gamma Delta


Alpha Beta Gamma Delta



Naphthoquinone Phylloquinone
(K1) Menaquinones (K2) Menadione
(K3)‡ Menadiol

Water soluble




B1 analogues

Acefurtiamine Allithiamine Fursultiamine Octotiamine Prosultiamine Sulbutiamine




Niacin Nicotinamide#


Pantothenic acid Dexpanthenol Pantethine


Pyridoxine#, Pyridoxal phosphate Pyridoxamine Pyritinol




Folic acid Dihydrofolic acid Folinic acid Levomefolic acid


Adenosylcobalamin Cyanocobalamin Hydroxocobalamin Methylcobalamin



Ascorbic acid# Dehydroascorbic acid



#WHO-EM ‡Withdrawn from market Clinical trials:

†Phase III §Never to phase III

v t e

GABAA receptor positive modulators


Brometone Butanol Chloralodol Chlorobutanol
(cloretone) Ethanol (alcohol) (alcoholic drink) Ethchlorvynol Isobutanol Isopropanol Menthol Methanol Methylpentynol Pentanol Petrichloral Propanol tert-Butanol (2M2P) tert-Pentanol (2M2B) Tribromoethanol Trichloroethanol Triclofos Trifluoroethanol


(-)-DMBB Allobarbital Alphenal Amobarbital Aprobarbital Barbexaclone Barbital Benzobarbital Benzylbutylbarbiturate Brallobarbital Brophebarbital Butabarbital/Secbutabarbital Butalbital Buthalital Butobarbital Butallylonal Carbubarb Crotylbarbital Cyclobarbital Cyclopentobarbital Difebarbamate Enallylpropymal Ethallobarbital Eterobarb Febarbamate Heptabarb Heptobarbital Hexethal Hexobarbital Metharbital Methitural Methohexital Methylphenobarbital Narcobarbital Nealbarbital Pentobarbital Phenallymal Phenobarbital Phetharbital Primidone Probarbital Propallylonal Propylbarbital Proxibarbital Reposal Secobarbital Sigmodal Spirobarbital Talbutal Tetrabamate Tetrabarbital Thialbarbital Thiamylal Thiobarbital Thiobutabarbital Thiopental Thiotetrabarbital Valofane Vinbarbital Vinylbital


2-Oxoquazepam 3-Hydroxyphenazepam Adinazolam Alprazolam Arfendazam Avizafone Bentazepam Bretazenil Bromazepam Brotizolam Camazepam Carburazepam Chlordiazepoxide Ciclotizolam Cinazepam Cinolazepam Clazolam Climazolam Clobazam Clonazepam Clonazolam Cloniprazepam Clorazepate Clotiazepam Cloxazolam CP-1414S Cyprazepam Delorazepam Demoxepam Diazepam Diclazepam Doxefazepam Elfazepam Estazolam Ethyl carfluzepate Ethyl dirazepate Ethyl loflazepate Etizolam EVT-201 FG-8205 Fletazepam Flubromazepam Flubromazolam Fludiazepam Flunitrazepam Flunitrazolam Flurazepam Flutazolam Flutemazepam Flutoprazepam Fosazepam Gidazepam Halazepam Haloxazolam Iclazepam Imidazenil Irazepine Ketazolam Lofendazam Lopirazepam Loprazolam Lorazepam Lormetazepam Meclonazepam Medazepam Menitrazepam Metaclazepam Mexazolam Midazolam Motrazepam N-Desalkylflurazepam Nifoxipam Nimetazepam Nitrazepam Nitrazepate Nitrazolam Nordazepam Nortetrazepam Oxazepam Oxazolam Phenazepam Pinazepam Pivoxazepam Prazepam Premazepam Proflazepam Pyrazolam QH-II-66 Quazepam Reclazepam Remimazolam Rilmazafone Ripazepam Ro48-6791 Ro48-8684 SH-053-R-CH3-2′F Sulazepam Temazepam Tetrazepam Tolufazepam Triazolam Triflubazam Triflunordazepam
(Ro5-2904) Tuclazepam Uldazepam Zapizolam Zolazepam Zomebazam


Carisbamate Carisoprodol Clocental Cyclarbamate Difebarbamate Emylcamate Ethinamate Febarbamate Felbamate Hexapropymate Lorbamate Mebutamate Meprobamate Nisobamate Pentabamate Phenprobamate Procymate Styramate Tetrabamate Tybamate


6-Methylapigenin Ampelopsin
(dihydromyricetin) Apigenin Baicalein Baicalin Catechin EGC EGCG Hispidulin Linarin Luteolin Rc-OMe Skullcap constituents (e.g., baicalin) Wogonin


Etomidate Metomidate Propoxate


10-Methoxyyangonin 11-Methoxyyangonin 11-Hydroxyyangonin Desmethoxyyangonin 11-Methoxy-12-hydroxydehydrokavain 7,8-Dihydroyangonin Kavain 5-Hydroxykavain 5,6-Dihydroyangonin 7,8-Dihydrokavain 5,6,7,8-Tetrahydroyangonin 5,6-Dehydromethysticin Methysticin 7,8-Dihydromethysticin Yangonin


Acecarbromal Apronal
(apronalide) Bromisoval Carbromal Capuride Ectylurea

Neuroactive steroids

Acebrochol Allopregnanolone
(brexanolone) Alfadolone Alfaxalone 3α-Androstanediol Androstenol Androsterone Certain anabolic-androgenic steroids Cholesterol DHDOC 3α-DHP 5α-DHP 5β-DHP DHT Etiocholanolone Ganaxolone Hydroxydione Minaxolone ORG-20599 ORG-21465 P1-185 Pregnanolone
(eltanolone) Progesterone Renanolone SAGE-105 SAGE-217 SAGE-324 SAGE-516 SAGE-689 SAGE-872 Testosterone THDOC


β-Carbolines: Abecarnil Gedocarnil Harmane SL-651,498 ZK-93423

Cyclopyrrolones: Eszopiclone Pagoclone Pazinaclone Suproclone Suriclone Zopiclone

Imidazopyridines: Alpidem DS-1 Necopidem Saripidem Zolpidem

Pyrazolopyrimidines: Divaplon Fasiplon Indiplon Lorediplon Ocinaplon Panadiplon Taniplon Zaleplon

Others: Adipiplon CGS-8216 CGS-9896 CGS-13767 CGS-20625 CL-218,872 CP-615,003 CTP-354 ELB-139 GBLD-345 Imepitoin JM-1232 L-838,417 Lirequinil
(Ro41-3696) NS-2664 NS-2710 NS-11394 Pipequaline ROD-188 RWJ-51204 SB-205,384 SX-3228 TGSC01AA TP-003 TPA-023 TP-13 U-89843A U-90042 Viqualine Y-23684


Fospropofol Propofol Thymol


Glutethimide Methyprylon Piperidione Pyrithyldione


Cartazolate Etazolate ICI-190,622 Tracazolate


Afloqualone Cloroqualone Diproqualone Etaqualone Mebroqualone Mecloqualone Methaqualone Methylmethaqualone Nitromethaqualone SL-164


Acetone Acetophenone Acetylglycinamide chloral hydrate Aliflurane Benzene Butane Butylene Centalun Chloral Chloral
betaine Chloral
hydrate Chloroform Cryofluorane Desflurane Dichloralphenazone Dichloromethane Diethyl ether Enflurane Ethyl chloride Ethylene Fluroxene Gasoline Halopropane Halothane Isoflurane Kerosine Methoxyflurane Methoxypropane Nitric oxide Nitrogen Nitrous oxide Norflurane Paraldehyde Propane Propylene Roflurane Sevoflurane Synthane Teflurane Toluene Trichloroethane (methyl chloroform) Trichloroethylene Vinyl ether


3-Hydroxybutanal α-EMTBL AA-29504 Avermectins (e.g., ivermectin) Bromide compounds (e.g., lithium bromide, potassium bromide, sodium bromide) Carbamazepine Chloralose Chlormezanone Clomethiazole DEABL Dihydroergolines (e.g., dihydroergocryptine, dihydroergosine, dihydroergotamine, ergoloid (dihydroergotoxine)) DS2 Efavirenz Etazepine Etifoxine Fenamates (e.g., flufenamic acid, mefenamic acid, niflumic acid, tolfenamic acid) Fluoxetine Flupirtine Hopantenic acid Lanthanum Lavender oil Lignans (e.g., 4-O-methylhonokiol, honokiol, magnolol, obovatol) Loreclezole Menthyl isovalerate
Menthyl isovalerate
(validolum) Monastrol Niacin Nicotinamide
(niacinamide) Org 25,435 Phenytoin Propanidid Retigabine
(ezogabine) Safranal Seproxetine Stiripentol Sulfonylalkanes (e.g., sulfonmethane (sulfonal), tetronal, trional) Terpenoids (e.g., borneol) Topiramate Valerian constituents (e.g., isovaleric acid, isovaleramide, valerenic acid, valerenol)

Unsorted benzodiazepine site positive modulators: α-Pinene MRK-409 (MK-0343) TCS-1105 TCS-1205

See also: Receptor/signaling modulators • GABA receptor modulators • GABA metabolism/transport modulators

v t e

Histone deacetylase inhibitors

3,3'-Diindolylmethane β-Hydroxybutyric acid (β-hydroxybutyrate) Abexinostat Acetoacetic acid
Acetoacetic acid
(acetoacetate) Allyl mercaptan Apicidin Belinostat Butyric acid
Butyric acid
(butyrate) Capsaicin Chidamide Citarinostat Curcumin Diallyl disulfide Entinostat Givinostat Indole-3-carbinol Kevetrin Martinostat Mocetinostat Nicotinamide Panobinostat Parthenolide Phenylbutyrate Pracinostat Quisinostat Resminostat Romidepsin Scriptaid Sodium butyrate Sodium oxybate
Sodium oxybate
(GHB sodium) Sodium phenylbutyrate Sodium valproate Sulforaphane Trapoxin B Trichostatin A Valnoctamide Valproic acid (valproate) Valproate
pivoxil Valproate
semisodium Valpromide Vorinostat

See also: Receptor/signaling modulators

Pharmacy and pharmacology port