In
atmospheric chemistry, is a generic term for the
nitrogen oxides that are most relevant for
air pollution, namely
nitric oxide (NO) and
nitrogen dioxide ().
[
][
] These gases contribute to the formation of
smog and
acid rain, as well as affecting
tropospheric ozone.
gases are usually produced from the reaction among
nitrogen and
oxygen during
combustion of fuels, such as
hydrocarbons, in air; especially at high temperatures, such as in car engines.
[
] In areas of high motor vehicle traffic, such as in large cities, the nitrogen oxides emitted can be a significant source of air pollution. gases are also produced naturally by
lightning.
The term is chemistry shorthand for molecules containing one nitrogen and one or more oxygen atom. It is generally meant to include
nitrous oxide (N
2O),
although
nitrous oxide is a fairly inert oxide of nitrogen that has many uses as an
oxidizer for rockets and car engines, an
anesthetic, and a
propellant for
aerosol sprays and
whipped cream. Nitrous oxide plays hardly any role in air pollution, although it may have a significant impact on the
ozone layer,
and is a significant
greenhouse gas.
is defined as the sum of plus the compounds produced from the oxidation of which include
nitric acid,
nitrous acid (HONO),
dinitrogen pentoxide (N
2O
5),
peroxyacetyl nitrate (PAN), alkyl nitrates (RONO
2), peroxyalkyl nitrates (ROONO
2), the nitrate radical (NO
3), and
peroxynitric acid (HNO
4).
Formation and reactions
Because of energy limitations, oxygen and nitrogen do not react at ambient temperatures. But at high temperatures, they undergo an
endothermic reaction producing various
oxides of nitrogen. Such temperatures arise inside an
internal combustion engine or a power station
boiler, during the combustion of a mixture of air and fuel, and naturally in a
lightning flash.
In
atmospheric chemistry, the term denotes the total concentration of NO and since the conversion between these two species is rapid in the stratosphere and troposphere.
During daylight hours, these concentrations together with that of
ozone are in
steady state, also known as
photostationary state(PSS); the ratio of NO to is determined by the intensity of
sunshine (which converts to NO) and the concentration of
ozone (which reacts with NO to again form ).
In other words, the concentration of ozone in the atmosphere is determined by the ratio of these two species.
This relationship between and ozone is also known as the
Leighton relationship.
The time τ that is needed to reach a steady state among and ozone is dominated by reaction (), which reverses reactions ()+():
for mixing ratio of NO,
O= 10 part per billion (ppb), the time constant is 40 minutes; for
O= 1 ppb, 4 minutes.
Formation of smog
When and
volatile organic compounds (VOCs) react in the presence of sunlight, they form photochemical
smog, a significant form of air pollution. The presence of photochemical smog increases during the summer when the incident solar radiation is higher. The emitted hydrocarbons from industrial activities and transportation react with NO
x quickly and increase the concentration of ozone and peroxide compounds, especially
peroxyacetyl nitrate (PAN).
Children, people with lung diseases such as
asthma, and people who work or exercise outside are particularly susceptible to adverse effects of smog such as damage to lung tissue and reduction in lung function.
Formation of nitric acid and acid rain
NO
2 is further oxidized in the gas phase during daytime by reaction with OH
:NO
2 + OH (+M) → HNO
3 (+M),
where M denotes a third molecule required to stabilize the addition product.
Nitric acid (HNO
3) is highly soluble in liquid water in aerosol particles or cloud drops.
NO
2 also reacts with ozone to form nitrate radical
:NO
2 + O
3 → NO
3 + O
2.
During the daytime, NO
3 is quickly photolyzed back to NO
2, but at night it can react with a second NO
2 to form
dinitrogen pentoxide.
:NO
2 + NO
3 (+M) → N
2O
5 (+M).
N
2O
5 reacts rapidly with liquid water (in aerosol particles or cloud drops, but not in the gas phase) to form HNO
3,
:N
2O
5 + H
2O(liq) → 2 HNO
3(aq)
These are thought to be the principal pathways for formation of nitric acid in the atmosphere.
This nitric acid contributes to
acid rain or may deposit to soil, where it makes
nitrate, which is of use to growing plants. The aqueous phase reaction
:2 + H
2O → HNO
2 + HNO
3
is too slow to be of any significance in the atmosphere.
Sources
Natural sources
Nitric oxide is produced during
thunderstorms due to the extreme heating and cooling within a
lightning strike. This causes stable molecules such as N
2 and O
2 to convert into significant amounts of NO similar to the process that occurs during high temperature fuel combustion. NO
x from lightning can become oxidized to produce
nitric acid (HNO
3), this can be precipitated out as acid rain or deposited onto particles in the air. Elevated production of NO
x from lightning depends on the season and geographic location. The occurrence of lightning is more common over land near the equator in the inter-tropical convergence zone (ITCZ) during summer months. This area migrates slightly as seasons change. NO
x production from lightning can be observed through satellite observations.
Scientists Ott et al.
estimated that each flash of lightning on average in the several mid-latitude and subtropical thunderstorms studied turned of nitrogen into chemically reactive . With 1.4 billion lightning flashes per year, multiplied by 7 kilograms per lightning strike, they estimated the total amount of produced by lightning per year is 8.6 million tonnes. However, emissions resulting from fossil fuel combustion are estimated at 28.5 million tonnes.
A recent discovery indicated that cosmic ray and solar flares can significantly influence the number of lightning strikes occurring on Earth. Therefore, space weather can be a major driving force of lightning-produced atmospheric .
Atmospheric constituents such as nitrogen oxides can be stratified vertically in the atmosphere. Ott noted that the lightning-produced is typically found at altitudes greater than 5 km, while combustion and biogenic (soil) are typically found near the sources at near surface elevation (where it can cause the most significant health effects).
Biogenic sources
Agricultural fertilization and the use of
nitrogen fixing plants also contribute to atmospheric , by promoting
nitrogen fixation by microorganisms. The nitrification process transforms ammonia into nitrate. And the denitrification is basically the reverse process of nitrification. During the denitrification, nitrate is reduced to nitrite then NO then N
2O and finally nitrogen. Through these processes, NO
x is emitted to the atmosphere.
A recent study conducted by the University of California Davis, found that adding nitrogen fertilizer to soil in California is contributing 25 percent or more to state-wide NO
x pollution levels. When nitrogen fertilizer is added to the soil, excess ammonium and nitrate not used by plants can be converted to NO by microorganism in the soil, which escapes into the air. NO
x is a precursor for smog formation which is already a known issue for the state of California. In addition to contributing to smog, when nitrogen fertilizer is added to the soil and the excess is released in the form of NO, or leached as
nitrate this can be a costly process for the farming industry.
A 2018 study by the Indiana University determined that forests in the eastern United States can expect to see increases in NO
x, as a result to changes in the types of trees which predominate. Due to human activity and
climate change, the
maples,
sassafras, and
tulip poplar are pushing out the beneficial
oak,
beech, and
hickory. The team determined that the first three tree species, maples, sassafras, and tulip poplar, are associated with ammonia-oxidizing bacteria known to "emit reactive nitrogen from soil." By contrast, the second three tree species, oak, beech and hickory, are associated with microbes that "absorb reactive nitrogen oxides," and thus can have a positive impact on the nitrogen oxide component of air quality. Nitrogen oxide release from forest soils is expected to be highest in Indiana, Illinois, Michigan, Kentucky and Ohio.
Industrial sources (anthropogenic sources)
The three primary sources of in
combustion processes:
* thermal
* fuel
* prompt
Thermal formation, which is highly temperature dependent, is recognized as the most relevant source when combusting natural gas. Fuel tends to dominate during the combustion of fuels, such as coal, which have a significant nitrogen content, particularly when burned in combustors designed to minimise thermal . The contribution of prompt is normally considered negligible. A fourth source, called ''feed'' is associated with the combustion of nitrogen present in the feed material of cement rotary kilns, at between 300 °C and 800 °C, where it is considered a minor contributor.
Thermal
Thermal refers to formed through high temperature oxidation of the diatomic nitrogen found in combustion air.
The formation rate is primarily a function of temperature and the
residence time of nitrogen at that temperature. At high temperatures, usually above 1600 °C (2900 °F), molecular nitrogen (N
2) and oxygen (O
2) in the combustion air dissociate into their atomic states and participate in a series of reactions.
The three principal reactions (the extended
Zel'dovich mechanism) producing thermal are:
:N
2+ O NO + N
:N + O
2 NO + O
:N + OH
NO + H
All three reactions are reversible.
Zeldovich was the first to suggest the importance of the first two reactions.
The last reaction of atomic nitrogen with the
hydroxyl radical,
•HO, was added by Lavoie, Heywood and Keck
to the mechanism and makes a significant contribution to the formation of thermal .
Fuel
It is estimated that transportation fuels cause 54% of the anthropogenic (i.e. human-caused) . The major source of production from nitrogen-bearing fuels such as certain coals and oil, is the conversion of fuel bound nitrogen to during combustion.
[ During combustion, the nitrogen bound in the fuel is released as a free radical and ultimately forms free N2, or NO. Fuel can contribute as much as 50% of total emissions through the combusting oil and as much as 80% through the combusting of coal.
Although the complete mechanism is not fully understood, there are two primary pathways of formation. The first involves the oxidation of volatile nitrogen species during the initial stages of combustion. During the release and before the oxidation of the volatiles, nitrogen reacts to form several intermediaries which are then oxidized into NO. If the volatiles evolve into a reducing atmosphere, the nitrogen evolved can readily be made to form nitrogen gas, rather than . The second pathway involves the combustion of nitrogen contained in the char matrix during the combustion of the char portion of the fuels. This reaction occurs much more slowly than the volatile phase. Only around 20% of the char nitrogen is ultimately emitted as , since much of the that forms during this process is reduced to nitrogen by the char, which is nearly pure carbon.
]
Prompt
Nitrogen oxides are released during manufacturing of nitrogen fertilizers. Though nitrous oxide is emitted during its application, it is then reacted in atmosphere to form nitrogen oxides. This third source is attributed to the reaction of atmospheric nitrogen, N2, with radicals such as C, CH, and CH2 fragments derived from fuel, rather than thermal or fuel processes. Occurring in the earliest stage of combustion, this results in the formation of fixed species of nitrogen such as NH (nitrogen monohydride), NCN (diradical cyanonitrene), HCN (hydrogen cyanide), •H2CN (dihydrogen cyanide) and •CN (cyano radical) which can oxidize to NO. In fuels that contain nitrogen, the incidence of prompt is comparatively small and it is generally only of interest for the most exacting emission targets.
Health and environment effects
There is strong evidence that respiratory exposure can trigger and exacerbate existing asthma symptoms, and may even lead to the development of asthma over longer periods of time. It has also been associated with heart disease, diabetes, birth outcomes, and all-cause mortality, but these nonrespiratory effects are less well-established.
reacts with ammonia, moisture, and other compounds to form nitric acid vapor and related particles.
reacts with volatile organic compounds in the presence of sunlight to form ozone. Ozone can cause adverse effects such as damage to lung tissue and reduction in lung function mostly in susceptible populations (children, elderly, asthmatics). Ozone can be transported by wind currents and cause health impacts far from the original sources. The American Lung Association estimates that nearly 50 percent of United States inhabitants live in counties that are not in ozone compliance. In South East England, ground level ozone pollution tends to be highest in the countryside and in suburbs, while in central London and on major roads NO emissions are able to "mop up" ozone to form and oxygen.
also readily reacts with common organic chemicals, and even ozone, to form a wide variety of toxic products: nitroarenes, nitrosamines and also the nitrate radical some of which may cause DNA mutations. Recently another pathway, via , to ozone has been found that predominantly occurs in coastal areas via formation of nitryl chloride when comes into contact with salt mist.
The direct effect of the emission of has positive contribution to the greenhouse effect. Instead of reacting with ozone in Reaction 3, NO can also react with HO2· and organic peroxyradicals (RO2·) and thus increase the concentration of ozone. Once the concentration of exceeds a certain level, atmospheric reactions result in net ozone formation. Since tropospheric ozone can absorb infrared radiation, this indirect effect of is intensifying global warming.
There are also other indirect effects of that can either increase or decrease the greenhouse effect. First of all, through the reaction of NO with HO2 radicals, •OH radicals are recycled, which oxidize methane molecules, meaning emissions can counter the effect of greenhouse gases. For instance, ship traffic emits a great amount of NOx which provides a source of NOx over the ocean. Then, photolysis of NO2 leads to the formation of ozone and the further formation of hydroxyl radicals (·OH) through ozone photolysis. Since the major sink of methane in the atmosphere is by reaction with •OH radicals, the NOx emissions from ship travel may lead to a net global cooling. However, in the atmosphere may undergo dry or wet deposition and return to land in the form of HNO3/NO3−. Through this way, the deposition leads to nitrogen fertilization and the subsequent formation of nitrous oxide (N2O) in soil, which is another greenhouse gas. In conclusion, considering several direct and indirect effects, emissions have a negative contribution to global warming.
in the atmosphere is removed through several pathways. During daytime, NO2 reacts with hydroxyl radicals (·OH) and forms nitric acid (HNO3), which can easily be removed by dry and wet deposition. Organic peroxyradicals (RO2·) can also react with NO and NO2 and result in the formation of organic nitrates. These are ultimately broken down to inorganic nitrate, which is a useful nutrient for plants. During nighttime, NO2 and NO can form nitrous acid (HONO) through surface-catalyzed reaction. Although the reaction is relatively slow, it is an important reaction in urban areas. In addition, the nitrate radical (NO3) is formed by the reaction between NO2 and ozone. At night, NO3 further reacts with NO2 and establishes an equilibrium reaction with dinitrogen pentoxide (N2O5). Via heterogeneous reaction, N2O5 reacts with water vapor or liquid water and forms nitric acid (HNO3). As mentioned above, nitric acid can be removed through wet and dry deposition and this results in the removal of from the atmosphere.
Biodiesel and
Biodiesel and its blends in general are known to reduce harmful tailpipe emissions such as: carbon monoxide; particulate matter (PM), otherwise known as soot; and unburned hydrocarbon emissions. While earlier studies suggested biodiesel could sometimes decrease NOx and sometimes increase NOx emissions, subsequent investigation has shown that blends of up to 20% biodiesel in USEPA-approved diesel fuel have no significant impact on NOx emissions compared with regular diesel. The state of California uses a special formulation of diesel fuel to produce less NOx relative to diesel fuel used in the other 49 states. This has been deemed necessary by the California Air Resources Board (CARB) to offset the combination of vehicle congestion, warm temperatures, extensive sunlight, PM, and topography that all contribute to the formation of ozone and smog. CARB has established a special regulation for Alternative Diesel Fuels to ensure that any new fuels, including biodiesel, coming into the market do not substantially increase NOx emissions. The reduction of emissions is one of the most important challenges for advances in vehicle technology. While diesel vehicles sold in the US since 2010 are dramatically cleaner than previous diesel vehicles, urban areas continue to seek more ways to reduce the formation of smog and ozone. formation during combustion is associated with a number of factors such as combustion temperature. As such, it can be observed that the vehicle drive cycle, or the load on the engine have more significant impact on NOx emissions than the type of fuel used. This may be especially true for modern, clean diesel vehicles that continuously monitor engine operation electronically and actively control engine parameters and exhaust system operations to limit NOx emission to less than 0.2 g/km. Low-temperature combustion or LTC technology may help reduce thermal formation of during combustion, however a tradeoff exists as high temperature combustion produces less PM or soot and results in greater power and fuel efficiency.
Regulation and emission control technologies
Selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) reduce post combustion by reacting the exhaust with urea or ammonia to produce nitrogen and water. SCR is now being used in ships, diesel trucks and in some diesel cars. The use of exhaust gas recirculation and catalytic converters in motor vehicle engines have significantly reduced vehicular emissions. was the main focus of the Volkswagen emissions violations.
Other technologies such as flameless oxidation (FLOX) and staged combustion significantly reduce thermal in industrial processes. Bowin low technology is a hybrid of staged-premixed-radiant combustion technology with a major surface combustion preceded by a minor radiant combustion. In the Bowin burner, air and fuel gas are premixed at a ratio greater than or equal to the stoichiometric combustion requirement.[Bob Joynt & Stephen Wu, ''Nitrogen oxides emissions standards for domestic gas appliances background study'' Combustion Engineering Consultant; February 2000] Water Injection technology, whereby water is introduced into the combustion chamber, is also becoming an important means of reduction through increased efficiency in the overall combustion process. Alternatively, the water (e.g. 10 to 50%) is emulsified into the fuel oil before the injection and combustion. This emulsification can either be made in-line (unstabilized) just before the injection or as a drop-in fuel with chemical additives for long term emulsion stability (stabilized).
References
{{nitrogen compounds
Category:Airborne pollutants
Category:Smog
Category:Nitrogen–oxygen compounds