Motorcycle armor
   HOME

TheInfoList



OR:

Motorcycle armor is
body armor Body armor, also known as body armour, personal armor or armour, or a suit or coat of armor, is protective clothing designed to absorb or deflect physical attacks. Historically used to protect military personnel, today it is also used by variou ...
for
motorcycle A motorcycle (motorbike, bike, or trike (if three-wheeled)) is a two or three-wheeled motor vehicle steered by a handlebar. Motorcycle design varies greatly to suit a range of different purposes: long-distance travel, commuting, cruising ...
riders. It comes in a variety of forms, from traditional yellow
foam Foams are materials formed by trapping pockets of gas in a liquid or solid. A bath sponge and the head on a glass of beer are examples of foams. In most foams, the volume of gas is large, with thin films of liquid or solid separating the reg ...
to high-tech compounds capable of absorbing large amounts of
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
. In its basic form an armored jacket will include
shoulder The human shoulder is made up of three bones: the clavicle (collarbone), the scapula (shoulder blade), and the humerus (upper arm bone) as well as associated muscles, ligaments and tendons. The articulations between the bones of the shoulder mak ...
and
elbow The elbow is the region between the arm and the forearm that surrounds the elbow joint. The elbow includes prominent landmarks such as the olecranon, the cubital fossa (also called the chelidon, or the elbow pit), and the lateral and the media ...
armor, and many jackets can have an optional back protector added too. Trousers should include hip and knee protection, and sometimes a coccyx protector too.


Types of motorcycle armor


Foam

This armour is either closed cell or open-cell foam and in various densities all the way up to a fairly hard foam used in helmets. Hard foams absorb impact/shock by destructive decomposition so they can only be used to protect for one incident and must be replaced. Soft foams offer little protection with close-cell foams providing a bit more protection than open-cell foams.


Memory foam

Of foam type armors,
memory foam Memory foam consists mainly of polyurethane with additional chemicals that increase its viscosity and density. It is often referred to as "viscoelastic" polyurethane foam, or low-resilience polyurethane foam (LRPu). The foam bubbles or ‘cells’ ...
armor achieves a higher level of impact absorption compared to open/closed-cell types above. Memory-foam rebounds slowly after compression. It is a very dense foam.


Silicone

These are gel type impact/shock absorbers. They are produced in various densities and generally used close to the body for comfort.


Hard plastic

Hard armour usually consists of a hard
plastic Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptab ...
and is designed to resist abrasive and puncture injuries. Hard armour generally is used in conjunction with some impact absorbing foam or other material on the inner surfaces facing the body. This is because hard armour by itself does not provide impact/shock absorption qualities.


Viscoelastic

The use of
viscoelastic In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist shear flow and strain linearly wi ...
materials in motorcycle armor has allowed for hand (glove) elbow, knee, shoulder, tail-bone, and back armor to be manufactured in a soft and pliable state at rest. Upon the introduction of shock the armor adopts extremely rigid and protective properties. Examples of this armor are SAS-TEC, SW, D3O, Knox MicroLock, EXO-TEC and TF armor. They are currently being used in jackets, trousers and suits by manufacturers such as KOMINE, REV'IT!, Firstgear, BMW Apparel, Fieldsheer, Scorpion, Rukka, Klim, Aerostich, Worse for Wear, and Hideout Leather. Viscoelastic armor is soft and body-forming until it is impacted. At impact it reacts quickly to form a rigid mass. D3O armor hardens edge-to-edge. Sas-Tec armor is considered to be a progressive reactive armor in that it hardens to a degree sufficient to counter the force. The material prevents trauma to the human body by three methods: #Shock Absorption: Material absorbs impact energy through phase change (hardening). #Shock Delay: Material delays the transmittance of some shock to the human body over a longer period of time. #Dissipation: Impacts are dissipated over larger areas of the body. Viscoelastic armor is able to achieve a higher level of impact-reduction with more comfort and less bulk than traditional hard armor–foam laminate solutions. Hybrid armor is layered with hard shell outer materials. European standard EN-1621 is used to rate the effectiveness of armor. In this standard, a 5 kg flat impactor impacts the armor at a speed of 4.47 m/s (energy 5x4,47x4,47/2=50 J "Joules"). 50 J of energy is roughly equivalent to dropping a 1 kg mass from a height of 5m (E=mGH). Sensors measure how much force is transmitted through the armor, its peak force in kilo-newtons (kN), and its period (how long it took the force to be transmitted). If the force transmitted through the armor is less than 35 kN then the armor (all armor except back) can attain an EN-1621-1 rating. Standard also includes other factors such as temperature stability and coverage area. The back protection standard is EN-1621-2. That standard rating is based on that energy being less than 18 kN (EN-1621-2 Level 1) or less than 9 kN (EN-1621-2 Level 2).


EN1621-1 Protectors for Limb Joints (Elbow, Knee, Shoulder, Hip)

There are three
Europe Europe is a large peninsula conventionally considered a continent in its own right because of its great physical size and the weight of its history and traditions. Europe is also considered a Continent#Subcontinents, subcontinent of Eurasia ...
an standards covering "motorcyclists' protective clothing against mechanical impact": EN1621-1, EN1621-2 and EN1621-3. EN1621-1 covers limb joint protectors for knees, elbows, shoulder, and hips. EN1621-2 is the certification standard for Back/Spine protectors, and EN 1621-3 refers to the Chest Protection Standard for Motorcyclists. There are updates to the standards from time to time and so the year the update comes out is added as a suffix to the standard. EN 1621-1:2012,EN Standards 1621-1:1997
/ref> EN 1621-2:2014, and EN 1621-3: 2019-03 are the current standards as of June 16, 2021.
/ref> All three standards assess the performance of protective devices by measuring the force transmitted through it when impacted by a falling mass. EN1621-1 assesses products designed to protect the shoulder, elbow and forearm, hip, knee and lower leg regions. The test apparatus consists of a mass of 5 kg ±10g with a 40 mm x 30 mm striking face, dropped onto the sample mounted on top of a 50 mm radius hemispherical dome. The anvil is further mounted onto a load cell, allowing a measurement to be made of the force transmitted through the protector. The kinetic energy of the falling mass at impact must not exceed 50 J. A protector subjected to this test method is deemed to conform to this standard if the average transmitted force of nine tests is: * less than 35 kN (EN1621-1 CE Level 1), with no single test result exceeding 50 kN, and * less than 20 kN (EN1621-1 CE Level 2) Dr. Roderick Woods at
Cambridge University , mottoeng = Literal: From here, light and sacred draughts. Non literal: From this place, we gain enlightenment and precious knowledge. , established = , other_name = The Chancellor, Masters and Schola ...
conducted the work that established the CE standard. Originally, there were three levels of protectors: Level 1 would be tested with an impact of 40 Joules, Level 2 at 50 Joules, and Level 3 at 60 Joules. In each case, the protector needed to reduce the mean transmitted force below 25 kN, and no single impact should exceed 37.5 kN. Two Italian manufacturers – allegedly concerned their protectors would not pass the highest standard – successfully lobbied for Level 3 to be removed. It contributed evidence to the assertion that the EU standards for motorcycle PPE have been subject to ''regulatory capture'' by manufacturers (a claim reiterated with the advent of EN 17092). In addition to ambient protection, protectors may optionally be certified to work at high temperatures (above 40 °C / 104°F) or low temperatures (-10°C / 14° F). Protectors that pass these tests will have a T+ or T- marking respectively. EN1621-2 assesses products designed to protect the back/spine. It is a more stringent standard, using an anvil striker that creates a point load, and allowing no more than 18 kN of force to be transmitted to attain Level 1 protection (EN-1621-2 CE Level 1). Protectors that allows less than 9 kN of force to be transmitted can attain a Level 2 protection (EN-1621-2 CE Level 2). See section below for more information. Motorcycle airbags are covered by a different standard (EN 1621-4).


EN1621-2 Back/Spine Protectors

European Standard EN 1621-2:2003 defines two levels of performance for CE approved back protectors. The test apparatus and procedure is similar to that of EN 1621-1:1997, but with a different impactor and anvil configuration. The impactor is a rounded triangular faced prism, of length 160 mm, base 50 mm, height 30.8 mm and radius 12.5 mm. The anvil is a radiused cylinder, with its axis orientated to the direction of impact, of height 190 mm, diameter 100 mm and rounded end radius 150 mm. When tested to the procedure defined in the standard, the two levels of performance are: * Level 1 protectors: The average peak force recorded below the anvil in the tests shall be below 18 kN, and no single value shall exceed 24 kN. * Level 2 protectors: The average peak force recorded below the anvil in the tests shall be below 9 kN, and no single value shall exceed 12 kN. Because of the more delicate nature of the
spinal column The vertebral column, also known as the backbone or spine, is part of the axial skeleton. The vertebral column is the defining characteristic of a vertebrate in which the notochord (a flexible rod of uniform composition) found in all chordates ...
, back protectors require that lower levels of force be transmitted. The introduction to EN 1621-2 states that approximately 13% of motorcyclists injured in road accidents have an injury to this back region. However, only 0.8% of the injured riders suffer a fracture of the spine and less than 0.2% of injured riders have a serious back injury resulting in neurological damage. This is supported by evidence from th
MAIDS Report
(2004), the most comprehensive in-depth data currently available for Powered Two-Wheelers (PTWs) accidents in Europe. A systematic review in 2016 found that too little evidence was available to determine whether motorcycle back protectors are effective. More recent work by Afquir ''et al'' in 2019 found that “very few injuries linked to posterior-anterior impacts could have been avoided by the use of back protection.” They conclude that “the design of back protectors should be reconsidered to better protect riders from what is referred to as compression fractures (craniocaudal force), which remain the primary form of fracture regardless of the rider’s characteristics.”


Specifications


Limitations of current standards

Research has revealed limitations of the current standard of motorcycle armour. According to Albanese ''et al'' (2017), “The allowable transmitted force of EN 1621-1 may be too high to effectively reduce the probability of impact injury. This is not surprising, given human tolerance levels that are reported in the literature A reduction in the maximum force limit would improve rider protection and appears feasible”. Additionally, Meredeth ''et al'' (2019) found that shoulder and knee armour need different levels of impact protection. And the CE standard for armour only reduced transmitted force to the shoulder by around 8% (± 5%). They concluded that: “distinct differences in injury protection performance observed between knee and shoulder impact protection indicate that there may be a need for different performance criteria for impact protection designated to protect different body regions.”


Main benefit of armor

Liz de Rome ''et al'' undertook a cross-sectional study of motorcycle protective clothing and armour. It was described as "the first study in over 25 years to examine the effectiveness of specialised motorcycle protective clothing and in particular, body armour." The study found "a significant reduction in the risk of open wounds (abrasions, cuts and lacerations) associated with all forms of motorcycle clothing fitted with body armour, and for gloves and pants when body armour was not present. However, there was no evidence of a reduction in the risk of fractures associated with body armour for any area of the body." While current armour proved inadequate for reducing fracture risk, the armour provided additional abrasion resistance, which was significant because of the high rate of failure of the clothing itself. "The results of the study also send a clear message to the manufacturers of motorcycle protective clothing. The proportion of jackets (29%), pants (28%) and gloves (25%) that failed under crash conditions due to material damage indicates a need for improved quality control." A later study by Wu et al at Université Lyon analysed the effect of motorcycle protective clothing on 951 riders involved in accidents. It found protective clothing was effective in reducing "abrasions/lacerations rather than contusions." However, it questioned the effectiveness of current body armour: "protective clothing did not reduce the risk of fracture, dislocation, or sprain, except for knee-high or ankle boots, which were associated with lower risk of ankle or foot fracture (RR = 0.43; 95% CI, 0.24-0.75). No effect of back protectors was shown."Wu D, Hours M, Ndiaye A, Coquillat A, Martin JL. Effectiveness of protective clothing for motorized 2-wheeler riders. Traffic Inj Prev. 2019;20(2):196-203. doi: 10.1080/15389588.2018.1545090. Epub 2019 Mar 22. PMID: 30901230.


See also

*
Motorcycle airbag The air bag vest is a personal safety device worn by some motorcyclists and horse riders. Airbag vests initially found popularity among equestrian competitors, and airbags have become mandatory in professional motorcycle racing. In 2018, it became ...
*
Outline of motorcycles and motorcycling The following outline is provided as an overview of motorcycles and motorcycling: Motorcycle — two-wheeled, single-track motor vehicle. Other names include: motorbike, bike, and cycle. Motorcycling — act of riding a motorcycle, around wh ...


References

{{Motorcycles
Armor Armour (British English) or armor (American English; see spelling differences) is a covering used to protect an object, individual, or vehicle from physical injury or damage, especially direct contact weapons or projectiles during combat, or fr ...