Microbiome
   HOME

TheInfoList



OR:

A microbiome () is the community of microorganisms that can usually be found living together in any given
habitat In ecology, the term habitat summarises the array of resources, physical and biotic factors that are present in an area, such as to support the survival and reproduction of a particular species. A species habitat can be seen as the physical ...
. It was defined more precisely in 1988 by Whipps ''et al.'' as "a characteristic microbial community occupying a reasonably well-defined habitat which has distinct physio-chemical properties. The term thus not only refers to the microorganisms involved but also encompasses their theatre of activity". In 2020, an international panel of experts published the outcome of their discussions on the definition of the microbiome. They proposed a definition of the microbiome based on a revival of the "compact, clear, and comprehensive description of the term" as originally provided by Whipps ''et al.'', but supplemented with two explanatory paragraphs. The first explanatory paragraph pronounces the dynamic character of the microbiome, and the second explanatory paragraph clearly separates the term ''microbiota'' from the term ''microbiome''. The microbiota consists of all living members forming the microbiome. Most microbiome researchers agree
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
, archaea,
fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from ...
, algae, and small protists should be considered as members of the microbiome. The integration of
phage A bacteriophage (), also known informally as a ''phage'' (), is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν ('), meaning "to devour". Bacter ...
s,
virus A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsk ...
es, plasmids, and mobile genetic elements is more controversial. Whipps's "theatre of activity" includes the essential role
secondary metabolite Secondary metabolites, also called specialised metabolites, toxins, secondary products, or natural products, are organic compounds produced by any lifeform, e.g. bacteria, fungi, animals, or plants, which are not directly involved in the norma ...
s play in mediating complex interspecies interactions and ensuring survival in competitive environments.
Quorum sensing In biology, quorum sensing or quorum signalling (QS) is the ability to detect and respond to cell population density by gene regulation. As one example, QS enables bacteria to restrict the expression of specific genes to the high cell densities at ...
induced by small molecules allows bacteria to control cooperative activities and adapts their
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological pr ...
s to the biotic environment, resulting, e.g., in cell-cell adhesion or
biofilm A biofilm comprises any syntrophic consortium of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular ...
formation. All animals and plants form associations with microorganisms, including protists, bacteria, archaea, fungi, and viruses. In the ocean, animal–microbial relationships were historically explored in single host–symbiont systems. However, new explorations into the diversity of microorganisms associating with diverse marine animal hosts is moving the field into studies that address interactions between the animal host and the multi-member microbiome. The potential for microbiomes to influence the health, physiology, behaviour, and ecology of marine animals could alter current understandings of how marine animals adapt to change. This applies to especially the growing climate-related and anthropogenic-induced changes already impacting the ocean. The plant microbiome plays key roles in plant health and food production and has received significant attention in recent years. Plants live in association with diverse microbial consortia, referred to as the plant microbiota, living both inside (the endosphere) and outside (the episphere) of plant tissues. They play important roles in the ecology and physiology of plants. The core plant microbiome is thought to contain keystone microbial taxa essential for plant health and for the fitness of the plant holobiont. Likewise, the mammalian gut microbiome has emerged as a key regulator of host physiology, and coevolution between host and microbial lineages has played a key role in the adaptation of mammals to their diverse lifestyles. Microbiome research originated in microbiology back in the seventeenth century. The development of new techniques and equipment boosted microbiological research and caused paradigm shifts in understanding health and disease. The development of the first microscopes allowed the discovery of a new, unknown world and led to the identification of microorganisms. Infectious diseases became the earliest focus of interest and research. However, only a small proportion of microorganisms are associated with disease or pathogenicity. The overwhelming majority of microbes are essential for healthy ecosystem functioning and known for beneficial interactions with other microbes and organisms. The concept that microorganisms exist as single cells began to change as it became increasingly obvious that microbes occur within complex assemblages in which species interactions and communication are critical. Discovery of DNA, the development of sequencing technologies, PCR, and
cloning Cloning is the process of producing individual organisms with identical or virtually identical DNA, either by natural or artificial means. In nature, some organisms produce clones through asexual reproduction. In the field of biotechnology, c ...
techniques enabled the investigation of microbial communities using cultivation-independent approaches. Further paradigm shifts occurred at the beginning of this century and still continue, as new sequencing technologies and accumulated sequence data have highlighted both the ubiquity of microbial communities in association within higher organisms and the critical roles of microbes in human, animal, and plant health. These have revolutionised
microbial ecology Microbial ecology (or environmental microbiology) is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life—Eukaryota, Archaea, and Bacteria—as well as viru ...
. The analysis of
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding g ...
s and metagenomes in a high-throughput manner now provide highly effective methods for researching the functioning of both individual microorganisms as well as whole microbial communities in natural habitats.


Background


History

Microbiome research originated in microbiology and started back in the seventeenth century. The development of new techniques and equipment has boosted microbiological research and caused paradigm shifts in understanding health and disease. Since infectious diseases have affected human populations throughout most of history, medical microbiology was the earliest focus of research and public interest. Additionally, food microbiology is an old field of empirical applications. The development of the first
microscope A microscope () is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisi ...
s allowed the discovery of a new, unknown world and led to the identification of microorganisms. Modified text was copied from this source, which is available under
Creative Commons Attribution 4.0 International License
File:Microbiome paradigm shifts.png, Shift of paradigm from microbes as unsocial organisms causing diseases to a holistic view of microorganisms as the centre of the One Health Concept interconnecting all areas of human lives. Access to the previously invisible world opened the eyes and the minds of the researchers of the seventeenth century. Antonie van Leeuwenhoek investigated diverse
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
of various shapes,
fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from ...
, and protozoa, which he called animalcules, mainly from water, mud, and dental plaque samples, and discovered
biofilm A biofilm comprises any syntrophic consortium of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular ...
s as a first indication of microorganisms interacting within complex communities.
Robert Koch Heinrich Hermann Robert Koch ( , ; 11 December 1843 – 27 May 1910) was a German physician and microbiologist. As the discoverer of the specific causative agents of deadly infectious diseases including tuberculosis, cholera (though the bacteri ...
's explanation of the origin of human and animal diseases as a consequence of microbial infection and development of the concept of
pathogenicity In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a ge ...
was an important milestone in microbiology. These findings shifted the focus of the research community and the public on the role of microorganisms as disease-forming agents that needed to be eliminated. However, comprehensive research over the past century has shown only a small proportion of microorganisms are associated with disease or pathogenicity. The overwhelming majority of microbes are essential for ecosystem functioning and known for beneficial interactions with other microbes as well as macroorganisms. In fact, maintaining a healthy microbiome is essential for human health and may be a target for new therapeutics. At the end of the nineteenth century,
microbial ecology Microbial ecology (or environmental microbiology) is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life—Eukaryota, Archaea, and Bacteria—as well as viru ...
started with the pioneering work by Martinus W. Beijerinck and Sergei Winogradsky. The newly established science of environmental microbiology resulted in another paradigm shift: microorganisms are everywhere in natural environments, often associated with hosts and, for the first time, beneficial effects on their hosts were reported. Subsequently, the concept that microorganisms exist as single cells began to change as it became increasingly obvious that microbes occur within complex assemblages in which species interactions and communication are critical to population dynamics and functional activities.Bassler, B.L. (2002) "Small talk: cell-to-cell communication in bacteria". ''Cell'', 109(4): 421–424. . Discovery of DNA, the development of sequencing technologies, PCR, and cloning techniques enabled the investigation of microbial communities using cultivation-independent, DNA and RNA-based approaches. A further important step was the introduction of phylogenetic markers such as the
16S rRNA 16S rRNA may refer to: * 16S ribosomal RNA 16 S ribosomal RNA (or 16 S rRNA) is the RNA component of the 30S subunit of a prokaryotic ribosome ( SSU rRNA). It binds to the Shine-Dalgarno sequence and provides most of the SSU structure. The g ...
gene for microbial community analysis by
Carl Woese Carl Richard Woese (; July 15, 1928 – December 30, 2012) was an American microbiologist and biophysicist. Woese is famous for defining the Archaea (a new domain of life) in 1977 through a pioneering phylogenetic taxonomy of 16S ribosomal RNA, ...
and
George E. Fox George Edward Fox (born December 17, 1945) is an astrobiologist, a Professor Emeritus and researcher at the University of Houston. He is an elected fellow of the American Academy of Microbiology, the American Association for the Advancement of Sc ...
in 1977. Nowadays biologists can
barcode A barcode or bar code is a method of representing data in a visual, machine-readable form. Initially, barcodes represented data by varying the widths, spacings and sizes of parallel lines. These barcodes, now commonly referred to as linear or o ...
bacteria, archaea,
fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from ...
, algae, and protists in their natural habitats, e.g., by targeting their 16S and
18S rRNA 18S may refer to: *18S ribosomal RNA *18S rRNA (adenine1779-N6/adenine1780-N6)-dimethyltransferase *18SEH The Family II is a straight-4 piston engine that was originally developed by Opel in the 1970s, debuting in 1979. Available in a wide range ...
genes, internal transcribed spacer (ITS), or, alternatively, specific functional regions of genes coding for specific enzymes. Another major paradigm shift was initiated at the beginning of this century and continues through today, as new sequencing technologies and accumulated sequence data have highlighted both the ubiquity of microbial communities in association within higher organisms and the critical roles of microbes in human, animal, and plant health. These new possibilities have revolutionized
microbial ecology Microbial ecology (or environmental microbiology) is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life—Eukaryota, Archaea, and Bacteria—as well as viru ...
, because the analysis of
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding g ...
s and metagenomes in a high-throughput manner provides efficient methods for addressing the functional potential of individual microorganisms as well as of whole communities in their natural habitats. Multiomics technologies including meta transcriptome, meta
proteome The proteome is the entire set of proteins that is, or can be, expressed by a genome, cell, tissue, or organism at a certain time. It is the set of expressed proteins in a given type of cell or organism, at a given time, under defined conditions. ...
and
metabolome The metabolome refers to the complete set of Small molecule, small-molecule chemicals found within a biological sample. The biological sample can be a Cell (biology), cell, a cellular organelle, an Organ (anatomy), organ, a Tissue (biology), tiss ...
approaches now provide detailed information on microbial activities in the environment. Based on the rich foundation of data, the cultivation of microbes, which was often ignored or underestimated over the last thirty years, has gained new importance, and high throughput culturomics is now an important part of the toolbox to study microbiomes. The high potential and power of combining multiple "omics" techniques to analyze host-microbe interactions are highlighted in several reviews.


Etymology

The word microbiome (from the
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
''micro'' meaning "small" and ''bíos'' meaning "life") was first used by J.L. Mohr in 1952 in
The Scientific Monthly ''The Scientific Monthly'' was a science magazine published from 1915 to 1957. Psychologist James McKeen Cattell, the former publisher and editor of ''The Popular Science Monthly'', was the original founder and editor. In 1958, ''The Scientific Mon ...
to mean the microorganisms found in a specific environment.


Definitions

Microbial communities have commonly been defined as the collection of microorganisms living together. More specifically, microbial communities are defined as multi-species assemblages, in which (micro) organisms interact with each other in a contiguous environment. In 1988, Whipps and colleagues working on the ecology of
rhizosphere The rhizosphere is the narrow region of soil or substrate that is directly influenced by root secretions and associated soil microorganisms known as the root microbiome. Soil pores in the rhizosphere can contain many bacteria and other microo ...
microorganisms provided the first definition of the term microbiome. They described the microbiome as a combination of the words ''micro'' and ''biome'', naming a "characteristic microbial community" in a "reasonably well-defined habitat which has distinct physio-chemical properties" as their "theatre of activity". This definition represents a substantial advancement of the definition of a microbial community, as it defines a microbial community with distinct properties and functions and its interactions with its environment, resulting in the formation of specific ecological niches. However, many other microbiome definitions have been published in recent decades. By 2020 the most cited definition was by Lederberg, and described microbiomes within an ecological context as a community of
commensal Commensalism is a long-term biological interaction (symbiosis) in which members of one species gain benefits while those of the other species neither benefit nor are harmed. This is in contrast with mutualism, in which both organisms benefit fro ...
, symbiotic, and pathogenic microorganisms within a body space or other environment. Marchesi and Ravel focused in their definition on the
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding g ...
s and microbial (and viral) gene expression patterns and
proteome The proteome is the entire set of proteins that is, or can be, expressed by a genome, cell, tissue, or organism at a certain time. It is the set of expressed proteins in a given type of cell or organism, at a given time, under defined conditions. ...
s in a given environment and its prevailing biotic and
abiotic In biology and ecology, abiotic components or abiotic factors are non-living chemical and physical parts of the environment that affect living organisms and the functioning of ecosystems. Abiotic factors and the phenomena associated with them under ...
conditions. All these definitions imply that general concepts of macro-ecology could be easily applied to microbe-microbe as well as to microbe-host interactions. However, the extent to which these concepts, developed for macro- eukaryotes, can be applied to
prokaryote A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Conne ...
s with their different lifestyles regarding dormancy, variation of
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological pr ...
, and
horizontal gene transfer Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). H ...
as well as to micro-eukaryotes that is not quite clear. This raises the challenge of considering an entirely novel body of conceptual ecology models and theory for microbiome ecology, particularly in relation to the diverse hierarchies of interactions of microbes with one another and with the host biotic and abiotic environments. Many current definitions fail to capture this complexity and describe the term microbiome as encompassing the genomes of microorganisms only. In 2020, a panel of international experts, organised by the EU-funded MicrobiomeSupport project, published the results of their deliberations on the definition of the microbiome. The panel was composed of about 40 leaders from diverse microbiome areas, and about one hundred further experts from around the world contributed through an online survey. They proposed a definition of the microbiome based on a revival of what they characterised as the "compact, clear, and comprehensive description of the term" as originally provided by Whipps ''et al''. in 1988, amended with a set of recommendations considering subsequent technological developments and research findings. They clearly separate the terms microbiome and microbiota and provide a comprehensive discussion considering the composition of microbiota, the heterogeneity and dynamics of microbiomes in time and space, the stability and resilience of microbial networks, the definition of core microbiomes, and functionally relevant keystone species as well as co-evolutionary principles of microbe-host and inter-species interactions within the microbiome. The panel extended the Whipps ''et al''. definition, which contains all important points that are valid even 30 years after its publication in 1988, by two explanatory paragraphs differentiating the terms microbiome and microbiota and pronouncing its dynamic character, as follows: * The ''microbiome'' is defined as a characteristic microbial community occupying a reasonable well-defined habitat which has distinct physio-chemical properties. The microbiome not only refers to the microorganisms involved but also encompass their theatre of activity, which results in the formation of specific ecological niches. The microbiome, which forms a dynamic and interactive micro-ecosystem prone to change in time and scale, is integrated in macro-ecosystems including eukaryotic hosts, and here crucial for their functioning and health. * The ''microbiota'' consists of the assembly of microorganisms belonging to different kingdoms (prokaryotes (bacteria, archaea), eukaryotes (algae, protozoa, fungi etc), while "their theatre of activity" includes microbial structures, metabolites, mobile genetic elements (such as transposons, phages, and viruses), and relic DNA embedded in the environmental conditions of the habitat.


Membership


Microbiota

The microbiota comprises all living members forming the microbiome. Most microbiome researchers agree bacteria, archaea, fungi, algae, and small protists should be considered as members of the microbiome. The integration of
phage A bacteriophage (), also known informally as a ''phage'' (), is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν ('), meaning "to devour". Bacter ...
s,
virus A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsk ...
es, plasmids, and mobile genetic elements is a more controversial issue in the definition of the microbiome. There is also no clear consensus as to whether extracellular DNA derived from dead cells, so-called "relic DNA", belongs to the microbiome. Relic DNA can be up to 40% of the sequenced DNA in soil, and was up to 33% of the total bacterial DNA on average in a broader analysis of habitats with the highest proportion of 80% in some samples.Lennon, J.T., Muscarella, M.E., Placella, S.A. and Lehmkuhl, B.K. (2018) "How, when, and where relic DNA affects microbial diversity". ''mBio'', 9(3). . Despite its omnipresence and abundance, relic DNA had a minimal effect on estimates of taxonomic and phylogenetic diversity. When it comes to the use of specific terms, a clear differentiation between microbiome and microbiota helps to avoid the controversy concerning the members of a microbiome. Microbiota is usually defined as the assemblage of living microorganisms present in a defined environment. As phages, viruses, plasmids, prions, viroids, and free DNA are usually not considered as living microorganisms, they do not belong to the microbiota. The term microbiome, as it was originally postulated by Whipps and coworkers, includes not only the community of the microorganisms but also their "theatre of activity". The latter involves the whole spectrum of molecules produced by the microorganisms, including their structural elements (nucleic acids, proteins, lipids, polysaccharides), metabolites (signalling molecules, toxins, organic, and inorganic molecules), and molecules produced by coexisting hosts and structured by the surrounding environmental conditions. Therefore, all mobile genetic elements, such as phages, viruses, and "relic" and extracellular DNA, should be included in the term microbiome, but are not a part of microbiota. The term microbiome is also sometimes confused with the metagenome. Metagenome is, however, clearly defined as a collection of genomes and genes from the members of a microbiota. Microbiome studies sometimes focus on the behaviour of a specific group of microbiota, generally in relation to or justified by a clear hypothesis. More and more terms like
bacteriome A bacteriome is a specialized organ, found mainly in some insects, that hosts endosymbiotic bacteria. Bacteriomes contain specialized cells, called bacteriocytes, that provide nutrients and shelter to the bacteria while protecting the host animal ...
, archaeome, mycobiome, or virome have started appearing in the scientific literature, but these terms do not refer to biomes (a regional ecosystem with a distinct assemblage of (micro) organisms, and physical environment often reflecting a certain climate and soil) as the microbiome itself. Consequently, it would be better to use the original terms (bacterial, archaeal, or fungal community). In contrast to the microbiota, which can be studied separately, the microbiome is always composed by all members, which interact with each other, live in the same habitat, and form their ecological niche together. The well-established term ''virome'' is derived from virus and genome and is used to describe viral shotgun metagenomes consisting of a collection of nucleic acids associated with a particular ecosystem or
holobiont A holobiont is an assemblage of a host and the many other species living in or around it, which together form a discrete ecological unit through symbiosis, though there is controversy over this discreteness. The components of a holobiont are i ...
. ''Viral metagenomes'' can be suggested as a semantically and scientifically better term.


Networks

File:Microbial interactions visualized through microbial co-occurrence networks.webp,
Co-occurrence network Co-occurrence network, sometimes referred to as a semantic network, is a method to analyze text that includes a graphic visualization of potential relationships between people, organizations, concepts, biological organisms like bacteria or othe ...
s help visualising microbial interactions
Nodes usually represent taxa of microorganisms, and edges represent statistically significant associations between nodes.
–––––––––––––––––––––––––––
Testing of the hypotheses resulted from the network analyses is required for a comprehensive study of microbial interactions.
Microbes interact with one another, and these symbiotic interactions have diverse consequences for microbial fitness, population dynamics, and functional capacities within the microbiome. The microbial interactions can either be between microorganisms of the same species or between different species, genera, families, and domains of life. The interactions can be separated into positive, negative, and neutral types. Positive interactions include mutualism, synergism, and
commensalism Commensalism is a long-term biological interaction ( symbiosis) in which members of one species gain benefits while those of the other species neither benefit nor are harmed. This is in contrast with mutualism, in which both organisms benefit fr ...
. Negative interactions include amensalism such as predation, parasitism, antagonism, and competition. Neutral interactions are interactions where there is no observed effect on the functional capacities or fitness of interacting species microbial life strategy concepts. File:Co-occurrence networks showing difference in gut microbiota between herbivorous and carnivorous cichlids.webp, Co-occurrence networks show difference in gut microbiota between herbivorous and carnivorous cichlids
Nodes coloured according to phylum. The herbivore network has higher complexity (156 nodes and 339 edges) compared to the carnivore network (21 nodes and 70 edges). Modified text was copied from this source, which is available under
Creative Commons Attribution 4.0 International License
Microbiomes exhibit different adaptive strategies.
Oligotroph An oligotroph is an organism that can live in an environment that offers very low levels of nutrients. They may be contrasted with copiotrophs, which prefer nutritionally rich environments. Oligotrophs are characterized by slow growth, low rates o ...
s are organisms that can live in an environment offering very low levels of nutrients, particularly
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon mak ...
. They are characterised by slow growth, low rates of metabolism, and generally low population density. Oligotrophic environments include deep oceanic sediments, caves, glacial and polar ice, deep subsurface soil, aquifers, ocean waters, and leached soils. In contrast are the copiotrophs, which thrive in much higher carbon concentrations, and do well in high organic substrate conditions such as sewage lagoons. In addition to oligotrophic and copiotrophic strategists, the competitor–stress tolerator–ruderals framework can influence the outcomes of interactions. For example, microorganisms competing for the same source can also benefit from each other when competing for the same compound at different trophic levels. Stability of a complex microbial ecosystem depends on trophic interactions for the same substrate at different concentration levels. As of 2020 microbial social adaptations in nature have been understudied. Here molecular markers can provide insight into social adaptations by supporting the theories, e.g., of altruists and
cheaters Cheater or Cheaters may refer to: Arts and entertainment Films * ''The Cheaters'' (1930 film), an Australian silent film * ''Cheaters'' (1934 film), an American film directed by Phil Rosent * ''The Cheaters'' (1945 film), directed by Joseph Ka ...
in native microbiomes.


Coevolution

File:Shift of microbial-host coevolution from separation theories to a holistic approach.webp, In a holistic approach, the hosts and their associated microbiota are assumed to have coevolved with each other According to the "separation" approach, the microorganisms can be divided into pathogens, neutral, and symbionts, depending on their interaction with their host. The coevolution between host and its associated microbiota may be accordingly described as antagonistic (based on negative interactions) or mutualistic (based on positive interactions). As of 2020, the emergence in publications about
opportunistic pathogen An opportunistic infection is an infection caused by pathogens (bacteria, fungi, parasites or viruses) that take advantage of an opportunity not normally available. These opportunities can stem from a variety of sources, such as a weakened immune ...
s and pathobionts has produced a shift towards a holistic approach in the coevolutions theory. The holistic approach sees the host and its associated microbiota as one unit (the so-called
holobiont A holobiont is an assemblage of a host and the many other species living in or around it, which together form a discrete ecological unit through symbiosis, though there is controversy over this discreteness. The components of a holobiont are i ...
), that coevolves as one entity. According to the holistic approach, holobiont's disease state is linked to dysbiosis, low diversity of the associated microbiota, and their variability: a so-called pathobiome state. The healthy state, on the other hand, is accompanied with eubiosis, high diversity, and uniformity of the respective microbiota.


Types


Marine

File:Marine animal host-microbiome relationships.jpg, Relationships are generally thought to exist in a symbiotic state, and are normally exposed to environmental and animal-specific factors that may cause natural variations. Some events may change the relationship into a functioning but altered symbiotic state, whereas extreme stress events may cause dysbiosis or a breakdown of the relationship and interactions.Apprill, A. (2017) "Marine animal microbiomes: toward understanding host–microbiome interactions in a changing ocean". ''Frontiers in Marine Science'', 4: 222. . Modified text was copied from this source, which is available under
Creative Commons Attribution 4.0 International License
All animals on Earth form associations with microorganisms, including protists, bacteria, archaea, fungi, and viruses. In the ocean, animal–microbial relationships were historically explored in single host–symbiont systems. However, new explorations into the diversity of microorganisms associating with diverse marine animal hosts is moving the field into studies that address interactions between the animal host and a more multi-member microbiome. The potential for microbiomes to influence the health, physiology, behavior, and ecology of marine animals could alter current understandings of how marine animals adapt to change, and especially the growing climate-related and anthropogenic-induced changes already impacting the ocean environment. The microbiomes of diverse marine animals are currently under study, from simplistic organisms including sponges and ctenophores to more complex organisms such as sea squirts and sharks. The relationship between the Hawaiian bobtail squid and the bioluminescent bacterium ''
Aliivibrio fischeri ''Aliivibrio fischeri'' (also called ''Vibrio fischeri'') is a Gram-negative, rod-shaped bacterium found globally in marine environments. This species has bioluminescent properties, and is found predominantly in symbiosis with various marine anim ...
'' is one of the best studied symbiotic relationships in the sea and is a choice system for general symbiosis research. This relationship has provided insight into fundamental processes in animal-microbial symbioses, and especially biochemical interactions and signaling between the host and bacterium. The gutless marine
oligochaete Oligochaeta () is a subclass of animals in the phylum Annelida, which is made up of many types of aquatic and terrestrial worms, including all of the various earthworms. Specifically, oligochaetes comprise the terrestrial megadrile earthworm ...
worm ''
Olavius algarvensis ''Olavius algarvensis'' is a species of gutless oligochaete worm in the family Tubificidae which depends on symbiotic bacteria for its nutrition. Habitats and research ''Olavius algarvensis'' lives in coastal sediments in the Mediterranean. It ...
'' is another relatively well-studied marine host to microbes. These three centimetre long worms reside within shallow marine sediments of the Mediterranean Sea. The worms do not contain a mouth or a digestive or excretory system, but are instead nourished with the help of a suite of extracellular bacterial endosymbionts that reside upon coordinated use of sulfur present in the environment. This system has benefited from some of the most sophisticated 'omics and visualization tools.Woyke, T., Teeling, H., Ivanova, N.N., Huntemann, M., Richter, M., Gloeckner, F.O., Boffelli, D., Anderson, I.J., Barry, K.W., Shapiro, H.J. and Szeto, E. (2006) "Symbiosis insights through metagenomic analysis of a microbial consortium". ''Nature'', 443(7114): 950–955. . For example, multi-labeled probing has improved visualization of the microbiome and transcriptomics and proteomics have been applied to examine host–microbiome interactions, including energy transfer between the host and microbes and recognition of the consortia by the worm's innate immune system. The major strength of this system is that it does offer the ability to study host–microbiome interactions with a low diversity microbial consortium, and it also offers a number of host and microbial genomic resources
Coral Corals are marine invertebrates within the class Anthozoa of the phylum Cnidaria. They typically form compact colonies of many identical individual polyps. Coral species include the important reef builders that inhabit tropical oceans and ...
s are one of the more common examples of an animal host whose symbiosis with microalgae can turn to dysbiosis, and is visibly detected as bleaching. Coral microbiomes have been examined in a variety of studies, which demonstrate how variations in the ocean environment, most notably temperature, light, and inorganic nutrients, affect the abundance and performance of the microalgal symbionts, as well as calcification and physiology of the host. Studies have also suggested that resident bacteria, archaea, and fungi additionally contribute to nutrient and organic matter cycling within the coral, with viruses also possibly playing a role in structuring the composition of these members, thus providing one of the first glimpses at a multi-domain marine animal symbiosis. The gammaproteobacterium '' Endozoicomonas'' is emerging as a central member of the coral's microbiome, with flexibility in its lifestyle. Given the recent mass bleaching occurring on reefs, corals will likely continue to be a useful and popular system for symbiosis and dysbiosis research.
Sponge Sponges, the members of the phylum Porifera (; meaning 'pore bearer'), are a basal animal clade as a sister of the diploblasts. They are multicellular organisms that have bodies full of pores and channels allowing water to circulate throug ...
s are common members of the ocean's diverse benthic habitats and their abundance and ability to filter large volumes of seawater have led to the awareness that these organisms play critical roles in influencing benthic and pelagic processes in the ocean. They are one of the oldest lineages of animals, and have a relatively simple body plan that commonly associates with bacteria, archaea, algal protists, fungi, and viruses.Webster, N.S. and Thomas, T. (2016) "The sponge hologenome". ''mBio'', 7(2). . Sponge microbiomes are composed of specialists and generalists, and complexity of their microbiome appears to be shaped by host phylogeny. Studies have shown that the sponge microbiome contributes to nitrogen cycling in the oceans, especially through the oxidation of ammonia by archaea and bacteria. Most recently, microbial symbionts of tropical sponges were shown to produce and store polyphosphate granules, perhaps enabling the host to survive periods of phosphate depletion in oligotrophic marine environments. The microbiomes of some sponge species do appear to change in community structure in response to changing environmental conditions, including temperature and ocean acidification, as well as synergistic impacts. File:Whale_blow_sampling_with_drone.png, Collecting a sample of blow from a blue whale using a helicopter drone File:Cetacean_blow's_bacteria.png, Relative abundance of bacterial classes from whale blow, air and seawater samples. Cetacean microbiomes can be difficult to assess because of difficulties accessing microbial samples. For example, many whale species are rare and are deep divers. There are different techniques for sampling a cetacean's gut microbiome. The most common is collecting fecal samples from the environment and taking a probe from the center that is non-contaminated. The
skin Skin is the layer of usually soft, flexible outer tissue covering the body of a vertebrate animal, with three main functions: protection, regulation, and sensation. Other animal coverings, such as the arthropod exoskeleton, have different de ...
is a barrier protecting marine mammals from the outside world. The epidermal microbiome on the skin is an indicator of how healthy the animal is, and is also an ecological indicator of the state of the surrounding environment. Knowing what the microbiome of the skin of marine mammals looks like under typical conditions allows understanding of how these communities different from free microbial communities found in the sea. Cetaceans are in danger because they are affected by multiple stress factors which make them more vulnerable to various diseases. They have been high susceptibility to airway infections, but little is known about their respiratory microbiome. Sampling the exhaled breath or "blow" of cetaceans can provide an assessment of their state of health. Blow is composed of a mixture of microorganisms and
organic material Organic matter, organic material, or natural organic matter refers to the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have c ...
, including
lipid Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids includ ...
s,
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s , and cellular debris derived from the linings of the airways which, when released into the relatively cooler outdoor air, condense to form a visible mass of vapor, which can be collected. There are various methods for collecting exhaled breath samples, one of the most recent is through the use of aerial drones. This method provides a safer, quieter, and less invasive alternative and often a cost-effective option for monitoring fauna and flora. Blow samples are taken to the laboratory where the respiratory tract microbiota are amplified and sequenced. The use of aerial drones has been more successful with large cetaceans due to slow swim speeds and larger blow sizes.


Terrestrial


Plant

File:Microbiome in plant ecosystem.jpg, Microbiomes in the plant ecosystem The plant microbiome plays roles in plant health and food production and has received significant attention in recent years.. Modified text was copied from this source, which is available under
Creative Commons Attribution 4.0 International License
Plants live in association with diverse microbial consortia. These microbes, referred to as the plant's microbiota, live both inside (the endosphere) and outside (the episphere) of plant tissues, and play important roles in the ecology and physiology of plants.Dastogeer, K.M., Tumpa, F.H., Sultana, A., Akter, M.A. and Chakraborty, A. (2020) "Plant microbiome–an account of the factors that shape community composition and diversity". ''Current Plant Biology'': 100161. . Modified text was copied from this source, which is available under
Creative Commons Attribution 4.0 International License
"The core plant microbiome is thought to comprise keystone microbial taxa that are important for plant fitness and established through evolutionary mechanisms of selection and enrichment of microbial taxa containing essential functions genes for the fitness of the plant holobiont."Compant, S., Samad, A., Faist, H. and Sessitsch, A. (2019) "A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application". ''Journal of advanced research'', 19: 29_37.. Plant microbiomes are shaped by both factors related to the plant itself, such as genotype, organ, species and health status, as well as factors related to the plant's environment, such as management, land use and climate. The health status of a plant has been reported in some studies to be reflected by or linked to its microbiome. Plant and plant-associated microbiota colonise different niches on and inside the plant tissue. All the above-ground plant parts together, called the phyllosphere, are a continuously evolving habitat due to
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
(UV) radiation and altering climatic conditions. It is primarily composed of leaves. Below-ground plant parts, mainly roots, are generally influenced by soil properties. Harmful interactions affect the plant growth through pathogenic activities of some microbiota members. On the other hand, beneficial microbial interactions promote plant growth.Shelake, R.M., Pramanik, D. and Kim, J.Y. (2019) "Exploration of plant-microbe interactions for sustainable agriculture in CRISPR era". ''Microorganisms'', 7(8): 269. . Modified text was copied from this source, which is available under
Creative Commons Attribution 4.0 International License


Animal

File:Principal-coordinate analysis of animal microbiome data sets.jpg, Principal coordinate analysis of animal gut microbiome data The mammalian gut microbiome has emerged as a key regulator of host physiology, and coevolution between host and microbial lineages has played a key role in the adaptation of mammals to their diverse lifestyles. Diet, especially
herbivory A herbivore is an animal anatomically and physiologically adapted to eating plant material, for example foliage or marine algae, for the main component of its diet. As a result of their plant diet, herbivorous animals typically have mouthpart ...
, is an important correlate of microbial diversity in mammals. Most mammalian microbiomes are also strongly correlated with host phylogeny, despite profound shifts in diet. This suggests host factors that themselves change across host phylogeny, such as gut physiology, play an important role in structuring the gut microbiomes across mammals. The vertebrate
adaptive immune system The adaptive immune system, also known as the acquired immune system, is a subsystem of the immune system that is composed of specialized, systemic cells and processes that eliminate pathogens or prevent their growth. The acquired immune system ...
is even speculated to have evolved as just such a factor for selective maintenance of symbiotic
homeostasis In biology, homeostasis (British also homoeostasis) (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and ...
. Modified text was copied from this source, which is available under
Creative Commons Attribution 4.0 International License
The importance of phylogeny-correlated factors to the diversity of vertebrate microbiomes more generally is still poorly understood. Phylosymbiosis, or the observation that more closely related host species have more similar microbiomes, has been described in a number of nonmammalian taxa. Other analyses have found substantial variation in phylosymbiotic signals among mammalian taxa, sometimes with conflicting results. The presence of a robust phylosymbiotic correlation implies that host factors control microbial assembly. Even if the specific mechanisms are unknown, variation in the strength or presence of a measurable phylosymbiotic signal across host phylogeny could prove useful for identifying such mechanisms through comparative studies. However, as of 2020 most studies have focused on just a few taxa at a time, and variable methods for both surveying the microbiome and measuring phylosymbiosis and host specificity (or the restriction of microbes to specific host lineages) have made generalisations difficult. Without broader evolutionary context, it is unclear how universally conserved patterns of host-microbe phylosymbiosis actually are. Growing evidence indicates that the strong patterns identified in mammals are the exception rather than the rule in vertebrates.
Meta-analyses A meta-analysis is a statistical analysis that combines the results of multiple scientific studies. Meta-analyses can be performed when there are multiple scientific studies addressing the same question, with each individual study reporting m ...
of fish and birds have failed to detect the strength of correlations to diet and phylogeny reported in mammals. A recent analysis of samples from more than 100 vertebrate species also found the strength of phylogenetic correlation to be much higher in mammals than in birds, reptiles, amphibians, or fish. It is increasingly appreciated in nonvertebrate animals that fundamental aspects of the host’s relationship to its symbiotic community can change drastically between taxa: many insects depend entirely on microbes for key metabolites, while others seem to be devoid of resident gut microbes.


Human

The human microbiome is the aggregate of all microbiota that reside on or within human tissues and
biofluid Body fluids, bodily fluids, or biofluids, sometimes body liquids, are liquids within the human body. In lean healthy adult men, the total body water is about 60% (60–67%) of the total Human body weight, body weight; it is usually slightly lower ...
s along with the corresponding anatomical sites in which they reside, including the skin, mammary glands, seminal fluid, uterus, ovarian follicles, lung, saliva,
oral mucosa The oral mucosa is the mucous membrane lining the inside of the mouth. It comprises stratified squamous epithelium, termed "oral epithelium", and an underlying connective tissue termed '' lamina propria''. The oral cavity has sometimes been des ...
, conjunctiva, biliary tract, and gastrointestinal tract. Types of
human microbiota This article lists some of the species recognized as belonging to the human microbiome. Whole-body distributed *''Acinetobacter calcoaceticus'' *''Burkholderia cepacia'' *''Pseudomonas pseudoalcaligenes'' *''Peptostreptococcus spp'' Natural ...
include
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
, archaea,
fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from ...
, protists and
viruses A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsky's ...
. Though
micro-animal Microfauna (Ancient Greek ''mikros'' "small" + New Latin ''fauna'' "animal") refers to microscopic animals and organisms that exhibit animal-like qualities. Microfauna are represented in the animal kingdom (e.g., nematodes, small arthropods) and t ...
s can also live on the human body, they are typically excluded from this definition. In the context of genomics, the term ''human microbiome'' is sometimes used to refer to the collective
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding g ...
s of resident microorganisms; the term '' human metagenome'' has the same meaning. Humans are colonised by many microorganisms, with approximately the same order of magnitude of non-human cells as human cells. Some microorganisms that colonize humans are
commensal Commensalism is a long-term biological interaction (symbiosis) in which members of one species gain benefits while those of the other species neither benefit nor are harmed. This is in contrast with mutualism, in which both organisms benefit fro ...
, meaning they co-exist without harming or benefiting humans; others have a mutualistic relationship with their human hosts. Conversely, some non- pathogenic microorganisms can harm human hosts via the
metabolites In biochemistry, a metabolite is an intermediate or end product of metabolism. The term is usually used for small molecules. Metabolites have various functions, including fuel, structure, signaling, stimulatory and inhibitory effects on enzymes, ...
they produce, like trimethylamine, which the human body converts to
trimethylamine N-oxide Trimethylamine ''N''-oxide (TMAO) is an organic compound with the formula (CH3)3NO. It is in the class of amine oxides. Although the anhydrous compound is known, trimethylamine ''N''-oxide is usually encountered as the dihydrate. Both the anhydr ...
via
FMO3 Flavin-containing monooxygenase 3 (FMO3), also known as dimethylaniline monooxygenase -oxide-forming3 and trimethylamine monooxygenase, is a flavoprotein enzyme () that in humans is encoded by the ''FMO3'' gene. This enzyme catalyzes the follow ...
-mediated oxidation. Certain microorganisms perform tasks that are known to be useful to the human host, but the role of most of them is not well understood. Those that are expected to be present, and that under normal circumstances do not cause disease, are sometimes deemed ''normal flora'' or ''normal microbiota''. The
Human Microbiome Project The Human Microbiome Project (HMP) was a United States National Institutes of Health (NIH) research initiative to improve understanding of the microbiota involved in human health and disease. Launched in 2007, the first phase (HMP1) focused on ...
(HMP) took on the project of sequencing the genome of the human microbiota, focusing particularly on the microbiota that normally inhabit the skin, mouth, nose, digestive tract, and vagina. It reached a milestone in 2012 when it published its initial results.


Assessment

Currently available methods for studying microbiomes, so-called multi-omics, range from high throughput isolation ( culturomics) and visualization ( microscopy), to targeting the taxonomic composition (
metabarcoding Metabarcoding is the barcoding of DNA/ RNA (or eDNA/ eRNA) in a manner that allows for the simultaneous identification of many taxa within the same sample. The main difference between barcoding and metabarcoding is that metabarcoding does ...
), or addressing the metabolic potential (
metabarcoding Metabarcoding is the barcoding of DNA/ RNA (or eDNA/ eRNA) in a manner that allows for the simultaneous identification of many taxa within the same sample. The main difference between barcoding and metabarcoding is that metabarcoding does ...
of functional genes,
metagenomics Metagenomics is the study of genetic material recovered directly from environmental or clinical samples by a method called sequencing. The broad field may also be referred to as environmental genomics, ecogenomics, community genomics or microb ...
) to analyze microbial activity (
metatranscriptomics Metatranscriptomics is the science that studies gene expression of microbes within natural environments, i.e., the metatranscriptome. It also allows to obtain whole gene expression profiling of complex microbial communities. While metagenomics foc ...
, metaproteomics,
metabolomics Metabolomics is the scientific study of chemical processes involving metabolites, the small molecule substrates, intermediates, and products of cell metabolism. Specifically, metabolomics is the "systematic study of the unique chemical fingerprin ...
). Based on metagenome data, microbial
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding g ...
s can be reconstructed. While first metagenome-assembled genomes were reconstructed from environmental samples, in recent years, several thousands of bacterial genomes were binned without culturing the organisms behind. For example, 154,723 microbial genomes of the global human microbiome were reconstructed in 2019 from 9,428 metagenomes. File:Methods for assessing microbial functioning.webp, Complex microbiome studies cover various areas, starting from the level of complete microbial cells ( microscopy, culturomics), followed by the DNA ( single cell genomics,
metabarcoding Metabarcoding is the barcoding of DNA/ RNA (or eDNA/ eRNA) in a manner that allows for the simultaneous identification of many taxa within the same sample. The main difference between barcoding and metabarcoding is that metabarcoding does ...
,
metagenomics Metagenomics is the study of genetic material recovered directly from environmental or clinical samples by a method called sequencing. The broad field may also be referred to as environmental genomics, ecogenomics, community genomics or microb ...
), RNA (
metatranscriptomics Metatranscriptomics is the science that studies gene expression of microbes within natural environments, i.e., the metatranscriptome. It also allows to obtain whole gene expression profiling of complex microbial communities. While metagenomics foc ...
), protein ( metaproteomics), and metabolites (
metabolomics Metabolomics is the scientific study of chemical processes involving metabolites, the small molecule substrates, intermediates, and products of cell metabolism. Specifically, metabolomics is the "systematic study of the unique chemical fingerprin ...
). In that order, the focus of the studies shifts from the microbial potential (learning about available microbiota in the given habitat) over the metabolic potential (deciphering available genetic material) towards microbial functioning (e.g., the discovery of the active
metabolic pathway In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell. The reactants, products, and intermediates of an enzymatic reaction are known as metabolites, which are modified by a sequence of chemical reac ...
s).
Computational modeling of microbiomes has been used to complement experimental methods for investigating microbial function by utilizing multi-omic data to predict complex inter-species and host-species dynamics. A popular '' in silico'' method is to combine metabolic network models of microbial taxa present in a community and use a mathematical modeling strategy such as
flux balance analysis Flux balance analysis (FBA) is a mathematical method for simulating metabolism in genome-scale reconstructions of metabolic networks. In comparison to traditional methods of modeling, FBA is less intensive in terms of the input data required for c ...
to predict the metabolic function of the microbial community at a taxon and community-level. As of 2020, understanding remains limited due to missing links between the massive availability of microbiome DNA sequence data on the one hand and limited availability of microbial isolates needed to confirm metagenomic predictions of gene function on the other hand. Metagenome data provides a playground for new predictions, yet much more data is needed to strengthen the links between sequence and rigorous functional predictions. This becomes obvious when considering that the replacement of one single amino acid residue by another may lead to a radical functional change, resulting in an incorrect functional assignment to a given gene sequence. Additionally, cultivation of new strains is needed to help identify the large fraction of unknown sequences obtained from metagenomics analyses, which for poorly studied ecosystems can be more than 70%. Depending on the applied method, even in well-studied microbiomes, 40–70% of the annotated genes in fully sequenced microbial genomes have no known or predicted function. As of 2019, 85 of the then established 118 phyla had not had a single species described, presenting a challenge to understanding prokaryotic functional diversity . The number of prokaryotic phyla may reach hundreds, and archaeal ones are among the least studied. The growing gap between the diversity of Bacteria and Archaea held in
pure culture A microbiological culture, or microbial culture, is a method of multiplying microbial organisms by letting them reproduce in predetermined culture medium under controlled laboratory conditions. Microbial cultures are foundational and basic diagn ...
and those detected by molecular methods has led to the proposal to establish a formal nomenclature for not-yet cultured taxa, primarily based on sequence information. According to this proposal, the concept of ''Candidatus'' species would be extended to the groups of closely related genome sequences, and their names would be published following established rules of
bacterial nomenclature The International Code of Nomenclature of Prokaryotes (ICNP) formerly the International Code of Nomenclature of Bacteria (ICNB) or Bacteriological Code (BC) governs the scientific names for Bacteria and Archaea.P. H. A. Sneath, 2003. A short his ...
. Each microbiome system is suited to address different types of questions based on the culturability of microbes, genetic tractability of microbes and host (where relevant), ability to maintain system in laboratory setting, and ability to make host/environment germfree. File:Tradeoffs between experimental questions and complexity of microbiome systems.jpg, Tradeoffs between experimental questions and complexity of microbiome systemsChevrette, M.G., Bratburd, J.R., Currie, C.R. and Stubbendieck, R.M. (2019 "Experimental Microbiomes: Models Not to Scale". ''mSystems'', 4(4): e00175-19. .
(A) Pairwise interactions between the soil bacteria ''
Bacillus subtilis ''Bacillus subtilis'', known also as the hay bacillus or grass bacillus, is a Gram-positive, catalase-positive bacterium, found in soil and the gastrointestinal tract of ruminants, humans and marine sponges. As a member of the genus ''Bacillus ...
'' and '' Streptomyces'' spp. are well-suited for characterizing the functions of secondary metabolites in microbial interactions.
(B) The symbiosis between bobtail squid and the marine bacterium ''
Aliivibrio fischeri ''Aliivibrio fischeri'' (also called ''Vibrio fischeri'') is a Gram-negative, rod-shaped bacterium found globally in marine environments. This species has bioluminescent properties, and is found predominantly in symbiosis with various marine anim ...
'' is fundamental to understanding host and microbial factors that influence colonization.
(C) The use of gnotobiotic mice is crucial for making links between host diet and the effects on specific microbial taxa in a community.


See also

* Earth Microbiome Project * Human microbiome * Initial acquisition of microbiota * Microbial population biology * Microbiomes of the built environment * Mycobiome


References

{{microorganisms, state=expanded Microbiomes