HOME
The Info List - Methyl Group


--- Advertisement ---



A methyl group is an alkyl derived from methane, containing one carbon atom bonded to three hydrogen atoms — CH3. In formulas, the group is often abbreviated Me. Such hydrocarbon groups occur in many organic compounds. It is a very stable group in most molecules. While the methyl group is usually part of a larger molecule, it can be found on its own in any of three forms: anion, cation or radical. The anion has eight valence electrons, the radical seven and the cation six. All three forms are highly reactive and rarely observed.[1]

Contents

1 Methyl cation, anion, and radical

1.1 Methyl cation 1.2 Methyl anion 1.3 Methyl radical

2 Reactivity

2.1 Oxidation 2.2 Methylation 2.3 Deprotonation 2.4 Free radical reactions

3 Chiral
Chiral
methyl 4 Etymology 5 See also 6 References

Methyl cation, anion, and radical[edit] Methyl cation[edit] The methylium cation (CH3+) exists in the gas phase, but is otherwise not encountered. Some compounds are considered to be sources of the CH3+ cation, and this simplification is used pervasively in organic chemistry. For example, protonation of methanol gives a strongly electrophilic methylating reagent:

CH3OH + H+ → CH3+ + H2O

Similarly, methyl iodide and methyl triflate are viewed as the equivalent of the methyl cation because they readily undergo SN2 reactions by weak nucleophiles. Methyl anion[edit] The methanide anion (CH3−) exists only in rarefied gas phase or under exotic conditions. It can be produced by electrical discharge in ketene at low pressure (less than one torr) and its enthalpy of reaction is determined to be about 252.2±3.3 kJ/mol.[2] In discussions mechanisms of organic reactions, methyl lithium and related Grignard reagents
Grignard reagents
are often considered to be salts of "CH3−"; and though the model may be useful for description and analysis, it is only a useful fiction. Such reagents are generally prepared from the methyl halides:

2 M + CH3X → MCH3 + MX

where M is an alkali metal. Methyl radical[edit] Main article: Methyl radical The methyl radical has the formula CH3. It exists in dilute gases, but in more concentrated form it readily dimerizes to ethane. It can be produced by thermal decomposition of only certain compounds, especially those with an -N=N- linkage. Reactivity[edit] The reactivity of a methyl group depends on the adjacent substituents. Methyl groups can be quite unreactive. For example, in organic compounds, the methyl group resists attack by even the strongest acids. Oxidation[edit] The oxidation of a methyl group occurs widely in nature and industry. The oxidation products derived from methyl are CH2OH, CHO, and CO2H. For example, permanganate often converts a methyl group to a carboxyl (-COOH) group, e.g. the conversion of toluene to benzoic acid. Ultimately oxidation of methyl groups gives protons and carbon dioxide, as seen in combustion. Methylation[edit] Main article: Methylation Demethylation (the transfer of the methyl group to another compound) is a common process, and reagents that undergo this reaction are called methylating agents. Common methylating agents are dimethyl sulfate, methyl iodide, and methyl triflate. Methanogenesis, the source of natural gas, arises via a demethylation reaction.[3] Deprotonation[edit] Certain methyl groups can be deprotonated. For example, the acidity of the methyl groups in acetone ((CH3)2CO) is about 1020 more acidic than methane. The resulting carbanions are key intermediates in many reactions in organic synthesis and biosynthesis. Fatty acids are produced in this way. Free radical reactions[edit] When placed in benzylic or allylic positions, the strength of the C-H bond is decreased, and the reactivity of the methyl group increases. One manifestation of this enhanced reactivity is the photochemical chlorination of the methyl group in toluene to give benzyl chloride.[4] Chiral
Chiral
methyl[edit] In the special case where one hydrogen is replaced by deuterium (D) and another hydrogen by tritium (T), the methyl substituent becomes chiral.[5] Methods exist to produce optically pure methyl compounds, e.g., chiral acetic acid (CHDTCO2H). Through the use of chiral methyl groups, the stereochemical course of several biochemical transformations have been analyzed.[6] Etymology[edit] French chemists Jean-Baptiste Dumas
Jean-Baptiste Dumas
and Eugene Peligot, after determining methanol's chemical structure, introduced "methylene" from the Greek methy "wine" and hȳlē "wood, patch of trees" with the intention of highlighting its origins, "alcohol made from wood (substance)".[7][8] The term "methyl" was derived in about 1840 by back-formation from "methylene", and was then applied to describe "methyl alcohol". Methyl is the IUPAC nomenclature of organic chemistry
IUPAC nomenclature of organic chemistry
term for an alkane (or alkyl) molecule, using the prefix "meth-" to indicate the presence of a single carbon. See also[edit]

Methanol

References[edit]

^ March, Jerry (1992). Advanced organic chemistry: reactions, mechanisms, and structure. John Wiley & Sons. ISBN 0-471-60180-2.  ^ G. Barney Ellison , P. C. Engelking , W. C. Lineberger (1978), "An experimental determination of the geometry and electron affinity of methyl radical CH3" Journal of the American Chemical Society, volume 100, issue 8, pages 2556–2558. doi:10.1021/ja00476a054 ^ Thauer, R. K., " Biochemistry
Biochemistry
of Methanogenesis: a Tribute to Marjory Stephenson", Microbiology, 1998, volume 144, pages 2377–2406. ^ M. Rossberg et al. “Chlorinated Hydrocarbons” in Ullmann’s Encyclopedia of Industrial Chemistry 2006, Wiley-VCH, Weinheim. doi:10.1002/14356007.a06_233.pub2 ^ "Archived copy" (PDF). Archived from the original (PDF) on 2010-07-14. Retrieved 2013-11-26.  ^ Heinz G. Floss, Sungsook Lee " Chiral
Chiral
methyl groups: small is beautiful" Acc. Chem. Res., 1993, volume 26, pp 116–122. doi:10.1021/ar00027a007 ^ J. Dumas and E. Péligot (1835) "Mémoire sur l'espirit de bois et sur les divers composés ethérés qui en proviennent" (Memoir on spirit of wood and on the various ethereal compounds that derive therefrom), Annales de chimie et de physique, 58 : 5-74; from page 9: Nous donnerons le nom de méthylène (1) à un radical … (1) μεθυ, vin, et υλη, bois; c'est-à-dire vin ou liqueur spiritueuse du bois. (We will give the name "methylene" (1) to a radical … (1) methy, wine, and hulē, wood; that is, wine or spirit of wood.) ^ Note that the correct Greek word for the substance "wood" is xylo-.

v t e

Functional groups

Only carbon, hydrogen and oxygen

Hydrocarbons

Allene Alkene
Alkene
(Allyl, Vinyl) Alkyl
Alkyl
(Methyl, Ethyl, Propyl, Butyl, Pentyl) Alkyne Benzyl Carbene Cumulene Methylene bridge Methylene group Methine Phenyl

Other

Acetoxy Acetyl Acryloyl Acyl Aldehyde Alkoxy (Methoxy) Benzoyl Carbonyl Carboxyl Dioxirane Epoxide Ester Ether Ethylenedioxy Hydroxy Ketone Methylenedioxy Peroxide
Peroxide
(Organic) Ynone

Only one element apart from C, H, O

Nitrogen

Amine Azo compound Cyanate Hydrazone Imide Imine Isocyanate Isonitrile Nitrene Nitrile Nitro compound Nitroso
Nitroso
compound Organic amide Oxime

Phosphorus

Phosphonate Phosphonous

Sulfur

Disulfide Sulfone Sulfonic acid Sulfoxide Thial Thioester Thioether Thioketone Thiol

Selenium

Selenol Selenonic acid Seleninic acid Selenenic acid

Tellurium

Tellurol

Other

Isothiocyanate Phosphoramide Sulfenyl chloride Sulfonamide Thiocyanate

See also chemical classification, chemical nomenclature (inorgan

.