Mendocino (microprocessor)
   HOME

TheInfoList



OR:

Celeron is
Intel Intel Corporation is an American multinational corporation and technology company headquartered in Santa Clara, California. It is the world's largest semiconductor chip manufacturer by revenue, and is one of the developers of the x86 seri ...
's
brand name A brand is a name, term, design, symbol or any other feature that distinguishes one seller's good or service from those of other sellers. Brands are used in business, marketing, and advertising for recognition and, importantly, to create an ...
for low-end
IA-32 IA-32 (short for "Intel Architecture, 32-bit", commonly called i386) is the 32-bit version of the x86 instruction set architecture, designed by Intel and first implemented in the 80386 microprocessor in 1985. IA-32 is the first incarnation o ...
and
x86-64 x86-64 (also known as x64, x86_64, AMD64, and Intel 64) is a 64-bit version of the x86 instruction set, first released in 1999. It introduced two new modes of operation, 64-bit mode and compatibility mode, along with a new 4-level paging ...
computer
microprocessor A microprocessor is a computer processor where the data processing logic and control is included on a single integrated circuit, or a small number of integrated circuits. The microprocessor contains the arithmetic, logic, and control circ ...
models targeted at low-cost personal computers. Celeron processors are compatible with
IA-32 IA-32 (short for "Intel Architecture, 32-bit", commonly called i386) is the 32-bit version of the x86 instruction set architecture, designed by Intel and first implemented in the 80386 microprocessor in 1985. IA-32 is the first incarnation o ...
software. They typically offer less performance per clock speed compared to flagship Intel CPU lines, such as the
Pentium Pentium is a brand used for a series of x86 architecture-compatible microprocessors produced by Intel. The original Pentium processor from which the brand took its name was first released on March 22, 1993. After that, the Pentium II and P ...
or
Core Core or cores may refer to: Science and technology * Core (anatomy), everything except the appendages * Core (manufacturing), used in casting and molding * Core (optical fiber), the signal-carrying portion of an optical fiber * Core, the centra ...
brands. Celeron branded processors often have less
cache Cache, caching, or caché may refer to: Places United States * Cache, Idaho, an unincorporated community * Cache, Illinois, an unincorporated community * Cache, Oklahoma, a city in Comanche County * Cache, Utah, Cache County, Utah * Cache County ...
or intentionally disabled advanced features, with variable impact on performance. While some Celeron designs have achieved strong performance for their segment, most of the Celeron line has exhibited noticeably degraded performance. This has been the primary justification for the higher cost of other Intel CPU brands versus the Celeron range. Introduced in April 1998, the first Celeron-branded CPU was based on the
Pentium II The Pentium II brand refers to Intel's sixth-generation microarchitecture (" P6") and x86-compatible microprocessors introduced on May 7, 1997. Containing 7.5 million transistors (27.4 million in the case of the mobile Dixon with 256  KB ...
. Subsequent Celeron-branded CPUs were based on the
Pentium III The Pentium III (marketed as Intel Pentium III Processor, informally PIII or P3) brand refers to Intel's 32-bit x86 desktop and mobile CPUs based on the sixth-generation P6 microarchitecture introduced on February 28, 1999. The brand's initial ...
,
Pentium 4 Pentium 4 is a series of single-core CPUs for desktops, laptops and entry-level servers manufactured by Intel. The processors were shipped from November 20, 2000 until August 8, 2008. The production of Netburst processors was active from 200 ...
,
Pentium M The Pentium M is a family of mobile 32-bit single-core x86 microprocessors (with the modified Intel P6 microarchitecture) introduced in March 2003 and forming a part of the Intel Carmel notebook platform under the then new Centrino brand. The ...
, and
Intel Core Intel Core is a line of streamlined midrange consumer, workstation and enthusiast computer central processing units (CPUs) marketed by Intel Corporation. These processors displaced the existing mid- to high-end Pentium processors at the time o ...
. In September 2022, Intel announced that the Celeron brand, along with Pentium, will be replaced with the new "Intel Processor" branding in 2023.


Background

As a product concept, the Celeron was introduced in response to Intel's loss of the low-end market, in particular to the Cyrix
6x86 The Cyrix 6x86 is a line of sixth-generation, 32-bit x86 microprocessors designed and released by Cyrix in 1995. Cyrix, being a fabless company, had the chips manufactured by IBM and SGS-Thomson. The 6x86 was made as a direct competitor to Int ...
, the
AMD K6 Advanced Micro Devices, Inc. (AMD) is an American multinational semiconductor company based in Santa Clara, California, that develops computer processors and related technologies for business and consumer markets. While it initially manufactur ...
, and the IDT
Winchip The WinChip series was a low-power Socket 7-based x86 processor designed by Centaur Technology and marketed by its parent company IDT. Overview Design The design of the WinChip was quite different from other processors of the time. Instead o ...
. Intel's existing low-end product, the
Pentium MMX The Pentium (also referred to as P5, its microarchitecture, or i586) is a fifth generation, 32-bit x86 microprocessor that was introduced by Intel on March 22, 1993, as the very first CPU in the Pentium, Pentium brand. It was instruction set com ...
, was no longer performance-competitive at 233 MHz. Although a faster Pentium MMX would have been a lower-risk strategy, the industry-standard
Socket 7 Socket 7 is a physical and electrical specification for an x86-style CPU socket on a personal computer motherboard. It was released in June 1995. The socket supersedes the earlier Socket 5, and accepts P5 Pentium microprocessors manufactured by ...
platform hosted a market of competitor CPUs that could be drop-in replacements for the Pentium MMX. Instead, Intel pursued a budget part that was to be pin-compatible with their high-end
Pentium II The Pentium II brand refers to Intel's sixth-generation microarchitecture (" P6") and x86-compatible microprocessors introduced on May 7, 1997. Containing 7.5 million transistors (27.4 million in the case of the mobile Dixon with 256  KB ...
product, using the Pentium II's proprietary
Slot 1 Slot 1 refers to the physical and electrical specification for the connector used by some of Intel's microprocessors, including the Pentium Pro, Celeron, Pentium II and the Pentium III. Both single and dual processor configurations were impleme ...
interface. The Celeron also effectively killed off the nine-year-old 80486 chip, which had been the low-end processor brand for laptops until 1998. Intel hired marketing firm Lexicon Branding, which had originally come up with the name "Pentium", to devise a name for the new product as well. The ''
San Jose Mercury News ''The Mercury News'' (formerly ''San Jose Mercury News'', often locally known as ''The Merc'') is a morning daily newspaper published in San Jose, California, in the San Francisco Bay Area. It is published by the Bay Area News Group, a subsidia ...
'' described Lexicon's reasoning behind the name they chose: '' Celer'' is
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
for swift, as in the word 'accelerate', and 'on' as in 'turned on'. Celeron is seven letters and three syllables, like Pentium. The 'Cel' of Celeron rhymes with 'tel' of Intel."


Desktop Celerons


P6-based Celerons


Covington

Launched in April 1998, the first ''Covington'' Celeron was essentially a 266 MHz Pentium II manufactured without any secondary cache at all. Covington also shared the 80523 product code of Deschutes. Although clocked at 266 or 300 MHz (frequencies 33 or 66 MHz higher than the desktop version of the Pentium w/MMX), the cacheless Celerons had trouble outcompeting the parts they were designed to replace. Substantial numbers were sold on first release, largely on the strength of the Intel name, but the Celeron quickly achieved a poor reputation both in the trade press and among computer professionals. The initial market interest faded rapidly in the face of its poor performance, and with sales at a very low level, Intel felt obliged to develop a substantially faster replacement as soon as possible. Nevertheless, the first Celerons were quite popular among some overclockers, for their flexible overclockability and reasonable price. Covington was only manufactured in
Slot 1 Slot 1 refers to the physical and electrical specification for the connector used by some of Intel's microprocessors, including the Pentium Pro, Celeron, Pentium II and the Pentium III. Both single and dual processor configurations were impleme ...
SEPP format.


Mendocino

The ''Mendocino'' Celeron, launched August 24, 1998, was the first retail CPU to use on-die
L2 cache A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, located closer to a processor core, whic ...
. Whereas Covington had no secondary cache at all, Mendocino included 128 KB of L2 cache running at full clock rate. The first Mendocino-core Celeron was clocked at a then-modest 300 MHz but offered almost twice the performance of the old cacheless Covington Celeron at the same clock rate. To distinguish it from the older Covington 300 MHz, Intel called the Mendocino core Celeron ''300A''. Although the other Mendocino Celerons (the 333 MHz part, for example) did not have an ''A'' appended, some people call all Mendocino processors ''Celeron-A'' regardless of clock rate. The new Mendocino-core Celeron was a good performer from the outset. Indeed, most industry analysts regarded the first Mendocino-based Celerons as ''too'' successful—performance was sufficiently high to not only compete strongly with rival parts, but also to attract buyers away from Intel's high-profit flagship, the Pentium II.
Overclockers In computing, overclocking is the practice of increasing the clock rate of a computer to exceed that certified by the manufacturer. Commonly, operating voltage is also increased to maintain a component's operational stability at accelerated spe ...
soon discovered that, given a high-end motherboard, many Celeron 300A CPUs could run reliably at 450 MHz. This was achieved by simply increasing the
front-side bus A front-side bus (FSB) is a computer communication interface (bus) that was often used in Intel-chip-based computers during the 1990s and 2000s. The EV6 bus served the same function for competing AMD CPUs. Both typically carry data between the ...
(FSB) clock rate from the stock 66 MHz to the 100 MHz clock of the
Pentium II The Pentium II brand refers to Intel's sixth-generation microarchitecture (" P6") and x86-compatible microprocessors introduced on May 7, 1997. Containing 7.5 million transistors (27.4 million in the case of the mobile Dixon with 256  KB ...
, helped by several facts: the 440BX chipset with nominal support for 100 MHz and correspondent memory had already been on the market, and the internal L2 cache was more tolerant to overclocking than external cache chips, which already had to run at half-CPU speed by design. At this frequency, the budget Mendocino Celeron rivaled the fastest x86 processors available. Some motherboards were designed to prevent this modification, by restricting the Celeron's front side bus to 66 MHz. However,
overclockers In computing, overclocking is the practice of increasing the clock rate of a computer to exceed that certified by the manufacturer. Commonly, operating voltage is also increased to maintain a component's operational stability at accelerated spe ...
soon found that putting tape over pin B21 of the Celeron's interface slot circumvented this, allowing a 100 MHz bus. At the time on-die cache was difficult to manufacture; especially L2 as more of it is needed to attain an adequate level of performance. A benefit of on-die cache is that it operates at the same clock rate as the CPU. All other Intel CPUs at that time used motherboard mounted or slot mounted secondary
L2 cache A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, located closer to a processor core, whic ...
, which was very easy to manufacture, cheap, and simple to enlarge to any desired size (typical cache sizes were 512 KB or 1 MB), but they carried the performance penalty of slower cache performance, typically running at FSB frequency of 60 to 100 MHz. The Pentium II's 512 KB of L2 cache was implemented with a pair of relatively high-performance L2 cache chips mounted on a special-purpose board alongside the processor itself, running at half the processor's clock rate and communicating with the CPU through a special
back-side bus In personal computer microprocessor architecture, a back-side bus (BSB), or backside bus, was a computer bus used on early Intel platforms to connect the CPU to CPU cache memory, usually off-die L2. If a design utilizes it along with a front-sid ...
. This method of cache placement was expensive and imposed practical cache-size limits, but allowed the Pentium II to be clocked higher and avoided front side bus RAM/L2 cache contention typical with motherboard-placed L2 cache configurations. Over time, newer Mendocino processors were released at 333, 366, 400, 433, 466, 500, and 533 MHz. The Mendocino Celeron CPU came only designed for a 66 MHz front-side bus, but this would not be a serious performance bottleneck until clock rates reached higher levels. The Mendocino Celerons also introduced new packaging. When the Mendocinos debuted they came in both a Slot 1 SEPP and
Socket 370 Socket 370 (also known as the PGA370 socket) is a CPU socket first used by Intel for Pentium III and Celeron processors to first complement and later replace the older Slot 1 CPU interface on personal computers. The "370" refers to the number of ...
PPGA package. The Slot 1 form had been designed to accommodate the off-chip cache of the Pentium II and had mounting problems with motherboards. Because all Celerons are a single-chip design, however, there was no reason to retain the slot packaging for L2 cache storage, and Intel discontinued the Slot 1 variant; beginning with the 466 MHz part, only the PPGA Socket 370 form was offered. (Third-party manufacturers made motherboard slot-to-socket adapters (nicknamed Slotkets) available for a few dollars, which allowed, for example, a Celeron 500 to be fitted to a Slot 1 motherboard.) One interesting note about the PPGA Socket 370 Mendocinos is they supported symmetric multiprocessing (SMP), and there was at least one motherboard released (the ABIT BP6) which took advantage of this fact. The Mendocino also came in a mobile variant, with clock rates of 266, 300, 333, 366, 400, 433 and 466 MHz. In Intel's "Family/Model/Stepping" scheme, Mendocino CPUs are family 6, model 6 and their Intel product code is 80524. These identifiers are shared with the related ''Dixon'' Mobile Pentium II variant.


Coppermine-128

The next generation Celeron was the '' ' Coppermine-128' '' (sometimes known as the ''Celeron II''). These were a derivative of Intel's ''Coppermine''
Pentium III The Pentium III (marketed as Intel Pentium III Processor, informally PIII or P3) brand refers to Intel's 32-bit x86 desktop and mobile CPUs based on the sixth-generation P6 microarchitecture introduced on February 28, 1999. The brand's initial ...
and were released on March 29, 2000. This Celeron used a Coppermine core with half of its L2 cache switched off, resulting in 128 KB of 4-way associative on-chip L2 cache as on the Mendocino, and was initially likewise restricted to a 66 MHz Front Side Bus speed. Despite the halved associativity on the L2 cache, which reduced hit rates compared to the full Coppermine design, it kept the 256-bit wide L2 cache bus, which meant an advantage compared to Mendocino and older Katmai/Pentium II designs, which all had a 64-bit datapath to their L2 caches. SSE instructions were also enabled. All Coppermine-128s were produced in the same
FCPGA A pin grid array (PGA) is a type of integrated circuit packaging. In a PGA, the package is square or rectangular, and the pins are arranged in a regular array on the underside of the package. The pins are commonly spaced 2.54 mm (0.1") a ...
Socket 370 format that most Coppermine Pentium III CPUs used. These Celeron processors began at 533 MHz and continued through 566, 600, 633, 667, 700, 733, and 766 MHz. Because of the limitations of the 66 MHz bus, there were diminishing returns on performance as clock rates increased. On January 3, 2001, Intel switched to a 100 MHz bus with the launch of the 800 MHz Celeron, resulting in a significant performance-per-clock improvement. All Coppermine-128 CPUs from 800 MHz and higher use the 100 MHz front side bus. Various models were made at 800, 850, 900, 950, 1000, and 1100 MHz. In Intel's "Family/Model/Stepping" scheme, Coppermine Celerons and Pentium IIIs are family 6, model 8 and their Intel product code is 80526.


Tualatin-256

These Celeron processors, released initially at 1.2 GHz on October 2, 2001, were based on the Pentium III ' Tualatin' core and made with a 0.13 micrometer process for the FCPGA 2 Socket 370. They were nicknamed "Tualeron" by some enthusiasts — a portmanteau of the words Tualatin and Celeron. Some software and users refer to the chips as ''Celeron-S'', referring to the chip's lineage with the Pentium III-S, but this is not an official designation. Intel later released 1 GHz and 1.1 GHz parts (which were given the extension ''A'' to their name to differentiate them from the Coppermine-128 of the same clock rate they replaced). A 1.3 GHz chip, launched January 4, 2002, and finally a 1.4 GHz chip, launched May 15, 2002 (the same day as the 1.7 GHz Willamette-based Celeron launch), marked the end of the Tualatin-256 line. The most significant differences compared to the Pentium III Tualatin are a lower 100 MHz bus and fixed 256 KB of L2 cache (whereas the Pentium III was offered with either 256 KB or 512 KB L2 cache); cache associativity stayed at 8-way, although the newly introduced data prefetching appears to have been disabled. Furthermore, the Tualatin-256's L2 cache has a higher latency which boosted manufacturing yields for this budget CPU. On the other hand, this improved stability when overclocking and most of them had no problem working at 133 MHz FSB for a substantial performance increase. Despite offering much improved performance over the Coppermine Celeron it superseded, the Tualatin Celeron still suffered stiff competition from AMD's
Duron Duron is a line of budget x86-compatible microprocessors manufactured by AMD. Released on June 19, 2000 as a lower-cost offering to complement AMD's then mainstream performance Athlon processor line, it also competed with rival chipmaker Inte ...
budget processor. Intel later responded by releasing the Netburst Willamette Celeron, and for some time Tualatin Celerons were manufactured and sold in parallel with the Pentium 4-based Celerons that replaced them. In Intel's "Family/Model/Stepping" scheme, Tualatin Celerons and Pentium IIIs are family 6, model 11 and their Intel product code is 80530.


NetBurst-based Celerons


Willamette-128

These Celerons were for socket 478 and were based on the '' Willamette''
Pentium 4 Pentium 4 is a series of single-core CPUs for desktops, laptops and entry-level servers manufactured by Intel. The processors were shipped from November 20, 2000 until August 8, 2008. The production of Netburst processors was active from 200 ...
core, being a completely different design compared to the previous Tualatin Celeron. These are often known as the ''Celeron 4''. Their L2 cache (128 KB) is half that of the ''Willamette''-based Pentium 4's 256 KB of L2 cache, but otherwise the two are very similar. With the transition to the Pentium 4 core the Celeron now featured SSE2 instructions. The ability to share the same socket as the Pentium 4 meant that the Celeron now had the option to use
RDRAM Rambus DRAM (RDRAM), and its successors Concurrent Rambus DRAM (CRDRAM) and Direct Rambus DRAM (DRDRAM), are types of synchronous dynamic random-access memory (SDRAM) developed by Rambus from the 1990s through to the early 2000s. The third-generati ...
,
DDR SDRAM Double Data Rate Synchronous Dynamic Random-Access Memory (DDR SDRAM) is a double data rate (DDR) synchronous dynamic random-access memory (SDRAM) class of memory integrated circuits used in computers. DDR SDRAM, also retroactively called DDR1 ...
, or traditional SDRAM. Willamette Celerons were launched May 15, 2002, initially at 1.7 GHz, and offered a noticeable performance improvement over the older 1.3 GHz ''Tualatin''-based Celeron part, being able to finally outperform a 1.3 GHz AMD Duron, which at the time was AMD's top competing budget processor. On June 12, 2002, Intel launched the last Willamette Celeron, a 1.8 GHz model. It contains 42 million transistors and has a die area of 217 mm2. In Intel's "Family/Model/Stepping" scheme, Willamette Celerons and Pentium 4s are family 15, model 1, and their Intel product code is 80531.


Northwood-128

These socket 478 Celerons are based on the '' Northwood'' Pentium 4 core, and also have 128 KB of L2 cache. The only difference between the ''Northwood-128''-based and the ''Willamette-128''-based Celeron is the fact that it was built on the new 130 nm process which shrank the die size, increased the transistor count, and lowered the core voltage from 1.7 V on the ''Willamette-128'' to 1.52 V for the ''Northwood-128''. Despite these differences, they are functionally the same as the Willamette-128 Celeron, and perform largely the same clock-for-clock. The ''Northwood-128'' family of processors were initially released as a 2 GHz core (a 1.9 GHz model was announced earlier, but never launched) on September 18, 2002. Since that time Intel has released at total of 10 different clock speeds ranging from 1.8 GHz to 2.8 GHz, before being surpassed by the Celeron D. Although the ''Northwood''-based Celerons suffer considerably from their small L2 cache, some clock rates have been favored in the enthusiast market because, like the old 300A, they can run well above their specified clock rate. In Intel's "Family/Model/Stepping" scheme, Northwood Celerons and Pentium 4s are family 15, model 2, and their Intel product code is 80532.


Prescott-256

Prescott-256 Celeron D processors, initially launched June 25, 2004, featuring double the L1 cache (16 KB) and L2 cache (256 KB) as compared to the previous Willamette and Northwood desktop Celerons, by virtue of being based on the '' Prescott'' Pentium 4 core. It also features a 533 MT/s bus and
SSE3 SSE3, Streaming SIMD Extensions 3, also known by its Intel code name Prescott New Instructions (PNI), is the third iteration of the SSE instruction set for the IA-32 (x86) architecture. Intel introduced SSE3 in early 2004 with the Prescott revis ...
, and a 3xx model number (compared to 5xx for Pentium 4s and 7xx for Pentium Ms). The Prescott-256 Celeron D was manufactured for
Socket 478 Socket 478, also known as mPGA478 or mPGA478B, is a 478-contact CPU socket used for Intel's Pentium 4 and Celeron series CPUs. Socket 478 was launched in August 2001 in advance of the Northwood core to compete with AMD's 462-pin Socket A and th ...
and
LGA 775 LGA 775 (land grid array 775), also known as Socket T, is an Intel desktop CPU socket. Unlike PGA CPU sockets, such as its predecessor Socket 478, LGA 775 has no socket holes; instead, it has 775 protruding pins which touch contact points on the ...
, with 3x0 and 3x5 designations from 310 through to 355 at clock speeds of 2.13 GHz to 3.33 GHz. The Intel Celeron D processor works with the Intel 845 and 865 chipset families. The ''D'' suffix actually has no official designation, and does not indicate that these models are dual-core. It is used simply to distinguish this line of Celeron from the previous, lower performing Northwood and Willamette series, and also from the mobile series, the Celeron M (which also uses 3xx model numbers). Unlike the
Pentium D Pentium D is a range of desktop 64-bit x86-64 processors based on the NetBurst microarchitecture, which is the dual-core variant of the Pentium 4 manufactured by Intel. Each CPU comprised two dies, each containing a single core, residing next to ...
, the Celeron D is ''not'' a dual core processor. The Celeron D was a major performance improvement over previous NetBurst-based Celerons. A test using a variety of applications, run by Derek Wilson at Anandtech.com, showed that the new Celeron D architecture alone offered up performance improvements on average of >10% over a Northwood Celeron when both CPUs were run at the same bus and clock rate. This CPU also had the addition of SSE3 instructions and the higher FSB which only contributed to this already impressive gain. Despite its many improvements, the ''Prescott'' core of the Celeron D had at least one major drawback heat. Unlike the fairly cool-running Northwood Celeron, the Prescott-256 had a class-rated TDP of 73 W, which prompted Intel to include a more intricate copper core/aluminum finned cooler to help handle the additional heat. In mid-2005, Intel refreshed the Celeron D with
Intel 64 x86-64 (also known as x64, x86_64, AMD64, and Intel 64) is a 64-bit version of the x86 instruction set, first released in 1999. It introduced two new modes of operation, 64-bit mode and compatibility mode, along with a new 4-level paging mo ...
and
XD Bit The NX bit (no-execute) is a technology used in CPUs to segregate areas of memory for use by either storage of processor instructions or for storage of data, a feature normally only found in Harvard architecture processors. However, the NX bit is ...
(eXecute Disable) enabled. Model numbers increase by 1 over the previous generation (e.g., 330 became 331). This only applied to
LGA 775 LGA 775 (land grid array 775), also known as Socket T, is an Intel desktop CPU socket. Unlike PGA CPU sockets, such as its predecessor Socket 478, LGA 775 has no socket holes; instead, it has 775 protruding pins which touch contact points on the ...
Celeron Ds. There are no
Socket 478 Socket 478, also known as mPGA478 or mPGA478B, is a 478-contact CPU socket used for Intel's Pentium 4 and Celeron series CPUs. Socket 478 was launched in August 2001 in advance of the Northwood core to compete with AMD's 462-pin Socket A and th ...
CPUs with XD Bit capabilities. In Intel's "Family/Model/Stepping" scheme, Prescott Celeron Ds and Pentium 4s are family 15, model 3 (up to stepping E0) or 4 (stepping E0 onwards), and their Intel product code is 80546 or 80547, depending on socket type.


Cedar Mill-512

Based on the ''Cedar Mill'' Pentium 4 core, this version of the Celeron D was launched May 28, 2006, and continued the 3xx naming scheme with the Celeron D 347 (3.06 GHz), 352 (3.2 GHz), 356 (3.33 GHz), 360 (3.46 GHz), and 365 (3.6 GHz). The Cedar Mill Celeron D is largely the same as the Prescott-256, except with double the L2 cache (512 KB) and based on a 65 nm manufacturing process. The Cedar Mill-512 Celeron D is LGA 775 exclusive. The main benefits of the Cedar Mill Celerons over the Prescott Celerons are the slightly increased performance due to the larger L2 cache, higher clock rates, and less heat dissipation, with several models having a TDP lowered to 65 W from Prescott's lowest offering of 73 W. In Intel's "Family/Model/Stepping" scheme, Cedar Mill Celeron Ds and Pentium 4s are family 15, model 6, and their Intel product code is 80552.


Core-based Celerons


Conroe-L

The Conroe-L Celeron is a single-core processor built on the
Core microarchitecture The Intel Core microarchitecture (provisionally referred to as Next Generation Micro-architecture, and developed as Merom) is a multi-core processor microarchitecture launched by Intel in mid-2006. It is a major evolution over the Yonah, the p ...
and is thus clocked much lower than the Cedar Mill Celerons, but still outperforms them. It is based on the 65 nm Conroe-L core, and uses a 400-series model number sequence. The FSB was increased to 800 MT/s from 533 MT/s in this generation, and the TDP was decreased from 65 W to 35 W. As is traditional with Celerons, it does not have Intel
VT-x x86 virtualization is the use of hardware-assisted virtualization capabilities on an x86/x86-64 CPU. In the late 1990s x86 virtualization was achieved by complex software techniques, necessary to compensate for the processor's lack of hardware-as ...
instruction support or
SpeedStep Enhanced SpeedStep is a series of dynamic frequency scaling technologies (codenamed Geyserville and including SpeedStep, SpeedStep II, and SpeedStep III) built into some Intel microprocessors that allow the clock speed of the processor to be dyna ...
(although Enhanced Halt State is enabled, allowing the Celerons to lower the multiplier to 6× and decrease core voltage while idle). All Conroe-L models are single-core processors for the value segment of the market, much like the AMD K8-based
Sempron Sempron has been the marketing name used by AMD for several different budget desktop CPUs, using several different technologies and CPU socket formats. The Sempron replaced the AMD Duron processor and competed against Intel's Celeron series of pr ...
. The product line was launched on June 5, 2007. On October 21, 2007, Intel presented a new processor for its Intel Essential Series. The full name of the processor is Celeron 220 and is soldered on the D201GLY2 motherboard. With 1.2 GHz and a 512 KB L2 cache it has a TDP of 19 W and can be cooled passively. The Celeron 220 is the successor of the Celeron 215 which is based on a Yonah core and used on the D201GLY motherboard. This processor is exclusively used on the mini-ITX boards targeted to the sub-value market segment.


Allendale

Intel launched the dual core Celeron E1xxx processor line on January 20, 2008, based on the Allendale core. The CPU has 800 MT/s FSB, 65 W TDP and uses 512 KB of the chip's 2 MB L2 cache, significantly limiting performance for uses such as gaming. New features to the Celeron family included full enhanced halt state and enhanced Intel
SpeedStep Enhanced SpeedStep is a series of dynamic frequency scaling technologies (codenamed Geyserville and including SpeedStep, SpeedStep II, and SpeedStep III) built into some Intel microprocessors that allow the clock speed of the processor to be dyna ...
technology. Clock rates range from 1.6 GHz to 2.4 GHz. It is compatible with other Allendale-based CPUs such as the Core 2 Duo E4xxx and Pentium Dual-Core E2xxx.


Wolfdale-3M

The Celeron E3000 series, starting with E3200 and E3300, was released in August 2009, featuring the Wolfdale-3M core used in
Pentium Dual-Core The Pentium Dual-Core brand was used for mainstream x86-architecture microprocessors from Intel from 2006 to 2009 when it was renamed to Pentium. The processors are based on either the 32-bit '' Yonah'' or (with quite different microarchitectu ...
E5000, Pentium E6000 and Core 2 Duo E7000 series. The main difference to Allendale-based Celeron processors is the support for
Intel VT-x x86 virtualization is the use of hardware-assisted virtualization capabilities on an x86/x86-64 CPU. In the late 1990s x86 virtualization was achieved by complex software techniques, necessary to compensate for the processor's lack of hardware-a ...
and increased performance due to the double L2 Cache of 1 MB.


Nehalem-based Celerons


Clarkdale

With the introduction of the Desktop Core i3 and Core i5 processor code named ''Clarkdale'' in January 2010, Intel also added a new Celeron line, starting with the Celeron G1101. This is the first Celeron to come with on-chip PCI Express and integrated graphics. Despite using the same Clarkdale chip as the Core i5-6xx line, it does not support
Turbo Boost Intel Turbo Boost is Intel's trade name for central processing units (CPUs) dynamic frequency scaling feature that automatically raises certain versions of its operating frequency when demanding tasks are running, thus enabling a higher resulting ...
, HyperThreading,
VT-d x86 virtualization is the use of hardware-assisted virtualization capabilities on an x86/x86-64 CPU. In the late 1990s x86 virtualization was achieved by complex software techniques, necessary to compensate for the processor's lack of hardware-as ...
, SMT,
Trusted Execution Technology Intel Trusted Execution Technology (Intel TXT, formerly known as LaGrande Technology) is a computer hardware technology whose primary goals are: * Attestation of the authenticity of a platform and its operating system. * Assuring that an authent ...
or AES new instructions, and it comes with only 2 MB of third-level cache enabled.


Jasper Forest

The Celeron P1053 is an embedded processor for Socket 1366 from the ''Jasper Forest'' family. All other members of this family are known as Xeon C35xx or C55xx. The Jasper Forest chip is closely related to Lynnfield and contains four cores, 8 MB of L3 cache and a QPI interface, but most of these are disabled in the Celeron version, leaving a single core with 2 MB of L3 cache.


Sandy Bridge-based desktop Celerons

The Sandy Bridge-based Celeron processors were released in 2011. They are
LGA 1155 LGA 1155, also called Socket H2, is a zero insertion force flip-chip land grid array (LGA) CPU socket designed by Intel for their CPUs based on the Sandy Bridge (2nd Gen) and Ivy Bridge (3rd Gen) microarchitectures. It is the successor of L ...
processors (available in single- and dual-core versions) with integrated Intel HD Graphics GPU and containing up to 2 MB of L3 cache. Turbo-Boost, AVX and AES-NI have been disabled. Hyper-Threading is available on some single-core models, namely G460, G465 and G470.


Ivy Bridge-based desktop Celerons

All Celerons of this generation belong in the G16xx series. They give some boost in performance over Sandy Bridge-based Celerons due to a 22 nm die shrink, as well as some other minor improvements.


Haswell-based desktop Celerons


Skylake-based desktop Celerons

All Celerons of this generation added
AES-NI An Advanced Encryption Standard instruction set is now integrated into many processors. The purpose of the instruction set is to improve the speed and security of applications performing encryption and decryption using Advanced Encryption Standard ...
and
RDRAND RDRAND (for "read random"; known as Intel Secure Key Technology, previously known as Bull Mountain) is an instruction for returning random numbers from an Intel on-chip hardware random number generator which has been seeded by an on-chip entropy s ...
instruction set.


Kaby Lake-based desktop Celerons


Coffee Lake-based desktop Celerons


Comet Lake-based desktop Celerons


Mobile Celerons


P6-based mobile Celerons


Mendocino (mobile)

Similar to the Mendocino (Celeron-A): 0.25 μm, 32 KB L1 cache and 128 KB L2 cache, but uses a lower voltage (1.5–1.9 V) and two power-saving modes: Quick Start, and Deep Sleep. Packaged in the small, 615-pin
BGA2 A ball grid array (BGA) is a type of surface-mount packaging (a chip carrier) used for integrated circuits. BGA packages are used to permanently mount devices such as microprocessors. A BGA can provide more interconnection pins than can be put ...
or
Micro-PGA2 Socket 495, sometimes referred to as µPGA2 is a CPU socket for the Intel Pentium III and Celeron mobile processors. This socket was also used in Microsoft's Xbox Console, but in a BGA (ball grid array) format for the Xbox CPU. This socket replac ...
package.


Tualatin-256 (mobile)

These were the first Mobile Celerons based on the Tualatin core. They differed from their desktop counterparts in that the Mobile series were offered in both 100 MHz and 133 MHz FSB. Like the desktop Tualatins, these chips had 256 KB of L2 cache.


NetBurst-based mobile Celerons


Northwood-256

These are the Mobile Celeron range used in laptops. Also based on the Northwood core, they feature a 256 KB L2 cache. These Celeron processors were a good deal higher performing than the desktop counterparts because of their larger L2 cache sizes. They were eventually replaced by the Celeron M brand which is built around the Pentium M processor design.


Pentium M-based mobile Celerons


Banias-512

This Celeron (sold under the Celeron M brand) is based on the ''Banias''
Pentium M The Pentium M is a family of mobile 32-bit single-core x86 microprocessors (with the modified Intel P6 microarchitecture) introduced in March 2003 and forming a part of the Intel Carmel notebook platform under the then new Centrino brand. The ...
, and differs from its parent in that it has half the L2 cache, and does not support the clock-varying SpeedStep technology. It performs reasonably well compared to the Pentium M, but battery life is noticeably shorter on a Celeron M–based notebook than it is on a comparable Pentium M notebook. A system based on the Celeron M processor may not use the
Centrino Centrino is a brand name of Intel Corporation which represents its Wi-Fi and WiMAX wireless computer networking adapters. Previously the same brand name was used by the company as a platform-marketing initiative. The change of the meaning of the ...
brand name, regardless of what chipset and
Wi-Fi Wi-Fi () is a family of wireless network protocols, based on the IEEE 802.11 family of standards, which are commonly used for local area networking of devices and Internet access, allowing nearby digital devices to exchange data by radio wav ...
components are used. In Intel's "Family/Model/Stepping" scheme, Banias Celeron Ms and Pentium Ms are family 6, model 9 and their Intel product code is 80535.


Shelton

The ''Shelton'' core is a Banias core without ''any'' L2 cache and SpeedStep. It is used in Intel's small form factor D845GVSH motherboard, intended for Asian and South American markets. The processor identifies itself as a "Intel Celeron 1.0B
GHz The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that one he ...
", to differentiate it from the previous Coppermine-128 and Tualatin 1.0 GHz processors. The Shelton'08 is a basic platform for a low cost notebook released by Intel at January 2008. The platform uses Intel's single-core Diamondville CPU with a clock frequency of 1.6 GHz and a 533 MT/s FSB and power consumption of 3.5 W. The platform's total power consumption is around 8 W, translating to battery usage time of between 3–4 hours. The platform consists of a 945GSE chipset, which includes built-in DirectX 9 graphics and supports single channel DDR2 memory. An 802.11g Wi-Fi module, USB/PATA port SSD (solid state drive), and a 7- or 8-inch panel will typically round out the platform.


Dothan-1024

A 90 nm Celeron M with half of the L2 cache of the 90 nm ''Dothan'' Pentium Ms (twice the L2 cache of the 130 nm Celeron Ms, though), and, like its predecessor, lacking SpeedStep. The first Celeron Ms that supports the
XD bit The NX bit (no-execute) is a technology used in CPUs to segregate areas of memory for use by either storage of processor instructions or for storage of data, a feature normally only found in Harvard architecture processors. However, the NX bit is ...
was released in January 2005, in general any Celeron M released after that supports the
XD bit The NX bit (no-execute) is a technology used in CPUs to segregate areas of memory for use by either storage of processor instructions or for storage of data, a feature normally only found in Harvard architecture processors. However, the NX bit is ...
. There is also a 512 KB low voltage version that was used in the early
ASUS Eee PC The ASUS Eee PC is a netbook computer line from Asus, and a part of the ASUS Eee product family. At the time of its introduction in late 2007, it was noted for its combination of a lightweight, Linux-based operating system, solid-state drive ( ...
models. In Intel's "Family/Model/Stepping" scheme, Dothan Celeron Ms and Pentium Ms are family 6, model 13 and their Intel product code is 80536.


Yonah

The Celeron M 400-series is a 65 nm Celeron M based on the single-core Yonah chip, like the Core Solo. Like its predecessors in the Celeron M series, this Celeron M has half of the L2 cache (1 MB) of Core Solo and lacks SpeedStep. This core also brings new features to Celeron M including a higher front side bus (533 MT/s),
SSE3 SSE3, Streaming SIMD Extensions 3, also known by its Intel code name Prescott New Instructions (PNI), is the third iteration of the SSE instruction set for the IA-32 (x86) architecture. Intel introduced SSE3 in early 2004 with the Prescott revis ...
instructions. September 2006 and January 4, 2008, mark a discontinuation of many ''Celeron M'' branded CPUs.


Core-based mobile Celerons


Merom-L

The Celeron M 523 (933 MHz ULV), M 520 (1.6 GHz), M 530 (1.73 GHz), 530 (1.73 GHz), 540 (1.86 GHz), 550 (2.0 GHz), 560 (2.13 GHz), 570 (2.26 GHz) are single-core 65 nm CPUs based on the ''Merom'' Core 2 architecture. They feature a 533 MT/s FSB, 1 MB of L2 cache (half that of the low end Core 2 Duo's 2 MB cache), XD-bit support, and Intel 64 technology, but lack SpeedStep and
Virtualization Technology Hardware virtualization is the virtualization of computers as complete hardware platforms, certain logical abstractions of their componentry, or only the functionality required to run various operating systems. Virtualization hides the physic ...
. Two different processor models are used with identical part numbers with the same part numbers, single-core Merom-L with 1 MB cache and dual-core Merom with 4 MB L2 cache that have the extra cache and core disabled. Celeron M 523, M 520 and M 530 are
Socket M Socket M (mPGA478MT) is a CPU interface introduced by Intel in 2006 for the Intel Core line of mobile processors. Technical specifications Socket M is used in all Intel Core products, as well as the Core-derived Dual-Core Xeon codenamed Sossam ...
-based, while Celeron 530 through 570 (without the M) are for
Socket P The Intel Socket P (mPGA478MN) is the mobile processor socket replacement for Core microarchitecture chips such as Core 2 Duo. It launched on May 9, 2007, as part of the Santa Rosa platform with the Merom and Penryn processors. Technical ...
. January 4, 2008, marked the discontinuation of Merom CPUs.


Merom-2M

The Celeron 573 (1 GHz, ULV), 575 (2 GHz) and 585 (2.16 GHz) are based on the Merom-2M core with only one core and 1 MB L2 cache enabled. They are similar to the Merom and Merom-L based Celerons but have a faster 667 MT/s FSB. The Celeron T1xxx processors are also based on the Merom-2M chips but have both cores enabled. The earlier T1400 (1.73 GHz) and T1500 (1.86 GHz) versions have a 533 MT/s FSB and 512 B L2 cache, while the more recent T1600 (1.66 GHz) and T1700 (1.83 GHz) versions have 667 MT/s and 1 MB L2 cache enabled but come with a lower clock frequency.


Penryn-3M

At the same time as the dual-core Merom-2M, Intel introduced the first 45 nm Celeron processor based on the Penryn-3M core with 800 MT/s FSB, 1 MB L2 cache and one core enabled. This includes the Celeron M 7xx
Consumer Ultra-Low Voltage Consumer Ultra-Low Voltage (CULV) is a computing platform developed by Intel.Merom processor).


Nehalem-based mobile Celerons


Arrandale

The Arrandale-based Celeron P4xxx and U3xxx lines are low-end versions of the Pentium P6xxx and U5xxx lines, originally released as the mobile dual-core lines of Core i3/i5/i7. Like the Clarkdale-based Celeron G1xxx, they use 2 MB of L3 cache, which is the amount that the earlier "Penryn" based CPUs used in the Pentium brand as their L2 cache. Like all Arrandale processors, the Celeron P4xxx and U3xxx use an integrated graphics core.


Sandy Bridge-based mobile Celerons

The Celeron B8xx processors released in 2011 follow the Arrandale line. They are Dual-Core processors with integrated graphics and use the same chips as the Pentium B9xx and Core i3/i5/i7-2xxx mobile processors, but with Turbo-Boost, Hyper-Threading, VT-d, TXT and AES-NI disabled and the L3 cache reduced to 2MB.


Dual-processor support

As a budget processor, the Celeron does not support a dual-processor configuration using multiple CPU sockets, however it has been discovered that multiprocessing could be enabled on Slot 1 Celeron processors by connecting a pin on the CPU core to a contact on the processor card's connector. In addition, Mendocino Socket 370 processors can use multiprocessing when used on specific dual Slot 1 motherboards by using a slot adapter. The unofficial SMP support was removed in the Coppermine Celerons, and dual-socket support is now limited to higher-end Xeon server-class processors. Conroe/Allendale based Celeron processors and later support multiprocessing using multi-core chips, but are still limited to one socket. The ABIT BP6 motherboard also allows two Mendocino Socket 370 Celeron processors to operate in a symmetric multiprocessing (SMP) configuration without any modification to the CPUs or the motherboard.


See also

*
List of Intel Celeron processors The Celeron is a family of microprocessors from Intel targeted at the low-end consumer market. CPUs in the Celeron brand have used designs from sixth- to eighth-generation CPU microarchitectures. Desktop processors P6 based Celerons Celeron ...


References

* * * * * * *


External links


Intel Celeron M Processor – Product overview

Intel Celeron M Banias, Dothan, and Yonah specifications

Intel Pentium II
an
Pentium III
based Celerons at cpu-collection.de





{{Use mdy dates, date=October 2018 Computer-related introductions in 1998 Intel x86 microprocessors