Medial forebrain bundle
   HOME

TheInfoList



OR:

The medial forebrain bundle (MFB), is a neural pathway containing fibers from the basal olfactory regions, the periamygdaloid region and the septal nuclei, as well as fibers from brainstem regions, including the ventral tegmental area and
nigrostriatal pathway The nigrostriatal pathway is a bilateral dopaminergic pathway in the brain that connects the substantia nigra pars compacta (SNc) in the midbrain with the dorsal striatum (i.e., the caudate nucleus and putamen) in the forebrain. It is one of the f ...
.


Anatomy

The MFB passes through the lateral
hypothalamus The hypothalamus () is a part of the brain that contains a number of small nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamu ...
and the
basal forebrain Part of the human brain, the basal forebrain structures are located in the forebrain to the front of and below the striatum. They include the ventral basal ganglia (including nucleus accumbens and ventral pallidum), nucleus basalis, diagonal b ...
in a rostral-caudal direction. The MFB has its main projections to these regions of Brodmann areas (BA) 8, 9, 10, 11, 11m. The superior frontal region of MFB projects to BA 8, 9, 10; the rostral middle frontal projects to dorsolateral prefrontal cortex (BA 9, 10); lateral orbitofrontal of MFB shows its projections to nucleus accumbens septi (NAC) and ventral striatum as subcortical reward associated structures. It contains both ascending and descending fibers. The
mesolimbic pathway The mesolimbic pathway, sometimes referred to as the reward pathway, is a dopaminergic pathway in the brain. The pathway connects the ventral tegmentum, ventral tegmental area in the midbrain to the ventral striatum of the basal ganglia in the for ...
, which is a collection of dopaminergic neurons that projects from the ventral tegmental area to the nucleus accumbens, is a component pathway of the MFB. The MFB is one of the two major pathways connecting the limbic forebrain, midbrain, and hindbrain. The other one is the dorsal diencephalic conduction (DDC) system. The two pathways seem to have parallel neural circuits, and share similar physiology and function.


Function

It is commonly accepted that the MFB is a part of the reward system, involved in the integration of reward and pleasure. Electrical stimulation of the medial forebrain bundle is believed to cause sensations of pleasure. This hypothesis is based upon intracranial self-stimulation (ICSS) studies. Animals will work for MFB ICSS, and humans report that MFB ICSS is intensely pleasurable. Another research technique that was used in determining the function of the MFB was microdialysis. Reinforcing electrical stimulation of the MFB using this method has shown to cause a release in dopamine in the nucleus accumbens. Other microdialysis studies have shown that the presence of natural reinforcers such as food, water, and a sex partner cause a release in dopamine in the nucleus accumbens. This shows that the electrical stimulation of the MFB causes a similar effect compared to natural reinforcers. The medial forebrain bundle has been shown to be linked to an individual's grief/sadness system through regulation of the individual's seeking/pleasure system.


Potential role in diagnosis/treatment

The medial forebrain bundle may serve as a target in treating
treatment-resistant depression Treatment-resistant depression is a term used in psychiatry to describe people with major depressive disorder (MDD) who do not respond adequately to a course of appropriate antidepressant medication within a certain time. Definitions of treatment- ...
. Since the MFB connects areas of the brain which are involved with motivated behavior, mood regulation, and antidepressant response the stimulation of the MFB through
deep brain stimulation Deep brain stimulation (DBS) is a neurosurgical procedure involving the placement of a medical device called a neurostimulator, which sends electrical impulses, through implanted electrodes, to specific targets in the brain (the brain nucleus ...
could be an effective form of treatment. Subjects that receive the deep brain stimulation treatment in the medial forebrain bundle have been reported to have high remission rates with normative functioning and no adverse side effects. The medial forebrain bundle may also serve to study abuse-related drug effects through intracranial self-stimulation. ICSS targets the MFB at the level of the lateral hypothalamus and elicits a range of responses from the subject through stimulation to acquire a baseline of responses. From this baseline the subject is then exposed to varying levels of stimuli in that are high/low in amplitude and frequency. These responses are then compared to the baseline of the subject to detect for sensitivity to the stimuli. Based on the sensitivity of the response from the subject, a level of inference on the drug abuse potential can be made.


Animal research

In animal studies studying the effects of
Levodopa-induced dyskinesia Levodopa-induced dyskinesia (LID) is a form of dyskinesia associated with levodopa (l-DOPA), used to treat Parkinson's disease. It often involves hyperkinetic movements, including chorea, dystonia, and athetosis. In the context of Parkinson's dis ...
, a major complication in the treatment of
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms usually emerge slowly, and as the disease worsens, non-motor symptoms becom ...
, lesions in the medial forebrain bundle show a maximum level of severity and sensitivity to levodopa and provide insight into the mechanisms of Levodopa-induced dyskinesia. Other lesions in the mouse, particularly in the striatum 6-OHDA, show a variable sensitivity to levodopa and shows the difference in lesion severity based on location. In a study with rats, using intracranial self-stimulation implanted in the medial forebrain bundle, rats treated with nicotine and methamphetamine showed an increased speed at which they pressed a lever to induce self-stimulation. The study indicates that the medial forebrain bundle may be directly linked to motivational behavior that is induced by drugs. In a research on rats, the deep brain stimulation (DBS) on the MFB causes an increase in dopamine for 40 seconds which is above baseline but after 40 seconds, it wasn't increased above baseline.


References


External links


Overview at thebrain.mcgill.ca
{{Authority control Neuroanatomy Olfactory system