Massive compact halo object
   HOME

TheInfoList



OR:

A massive astrophysical compact halo object (MACHO) is a kind of
astronomical Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, galaxi ...
body that might explain the apparent presence of
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
in galaxy halos. A MACHO is a body that emits little or no radiation and drifts through interstellar space unassociated with any planetary system (and may or may not be composed of normal
baryonic matter In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classifie ...
). Since MACHOs are not luminous, they are hard to detect. MACHO candidates include black holes or
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
s as well as
brown dwarf Brown dwarfs (also called failed stars) are substellar objects that are not massive enough to sustain nuclear fusion of ordinary hydrogen ( 1H) into helium in their cores, unlike a main-sequence star. Instead, they have a mass between the most ...
s and unassociated planets.
White dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
s and very faint red dwarfs have also been proposed as candidate MACHOs. The term was coined by astrophysicist Kim Griest.


Detection

A MACHO may be detected when it passes in front of or nearly in front of a star and the MACHO's gravity bends the light, causing the star to appear brighter in an example of
gravitational lensing A gravitational lens is a distribution of matter (such as a cluster of galaxies) between a distant light source and an observer that is capable of bending the light from the source as the light travels toward the observer. This effect is known ...
known as
gravitational microlensing Gravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers ...
. Several groups have searched for MACHOs by searching for the microlensing amplification of light. These groups have ruled out
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
being explained by MACHOs with mass in the range solar masses (0.3 lunar masses) to 100 solar masses. One group, the MACHO collaboration, claimed in 2000 to have found enough microlensing to predict the existence of many MACHOs with mean mass of about 0.5 solar masses, enough to make up perhaps 20% of the dark matter in the galaxy. This suggests that MACHOs could be white dwarfs or red dwarfs which have similar masses. However, red and white dwarfs are not completely dark; they do emit some light, and so can be searched for with the
Hubble Space Telescope The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most vers ...
and with proper motion surveys. These searches have ruled out the possibility that these objects make up a significant fraction of dark matter in our galaxy. Another group, the EROS2 collaboration, does not confirm the signal claims by the MACHO group. They did not find enough microlensing effect with a sensitivity higher by a factor 2. Observations using the Hubble Space Telescope's NICMOS instrument showed that less than one percent of the halo mass is composed of red dwarfs. This corresponds to a negligible fraction of the dark matter halo mass. Therefore, the missing mass problem is not solved by MACHOs.


Types

MACHOs may sometimes be considered to include black holes. Isolated black holes without any matter around them are truly black in that they emit no light and any light shone upon them is absorbed and not reflected. A black hole can sometimes be detected by the halo of bright gas and dust that forms around it as an accretion disk being pulled in by the black hole's gravity. Such a disk can generate jets of gas that are shot out away from the black hole because it cannot be absorbed quickly enough. An isolated black hole, however, would not have an accretion disk and would only be detectable by gravitational lensing. Cosmologists doubt they make up a majority of dark matter because the black holes are at isolated points of the galaxy. The largest contributor to the missing mass must be spread throughout the galaxy to balance the gravity. A minority of physicists, including Chapline and Laughlin, believe that the widely accepted model of the black hole is wrong and needs to be replaced by a new model, the dark-energy star; in the general case for the suggested new model, the cosmological distribution of
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univ ...
would be slightly lumpy and dark-energy stars of primordial type might be a possible candidate for MACHOs.
Neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
s, unlike black holes, are not heavy enough to collapse completely, and instead form a material rather like that of an
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
(sometimes informally called
neutronium Neutronium (sometimes shortened to neutrium, also referred to as neutrite) is a hypothetical substance composed purely of neutrons. The word was coined by scientist Andreas von Antropoff in 1926 (before the 1932 discovery of the neutron) for the ...
). After sufficient time these stars could radiate away enough energy to become cold enough that they would be too faint to see. Likewise, old
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
s may also become cold and dead, eventually becoming
black dwarf A black dwarf is a theoretical stellar remnant, specifically a white dwarf that has cooled sufficiently to no longer emit significant heat or light. Because the time required for a white dwarf to reach this state is calculated to be longer th ...
s, although the
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. ...
is not thought to be
old enough ''Old Enough'' is a 1984 American comedy-drama coming-of-age film written and directed by Marisa Silver, and produced by Dina Silver. The film follows the friendship that develops over one summer between two girls from different social backgro ...
for any stars to have reached this stage.
Brown dwarfs Brown dwarfs (also called failed stars) are substellar objects that are not massive enough to sustain nuclear fusion of ordinary hydrogen ( 1H) into helium in their cores, unlike a main-sequence star. Instead, they have a mass between the most ...
have also been proposed as MACHO candidates. Brown dwarfs are sometimes called "failed stars" as they do not have enough mass for nuclear fusion to begin once their gravity causes them to collapse. Brown dwarfs are about thirteen to seventy-five times the mass of Jupiter. The contraction of material forming the brown dwarf heats them up so they only glow feebly at infrared wavelengths, making them difficult to detect. A survey of
gravitational lensing A gravitational lens is a distribution of matter (such as a cluster of galaxies) between a distant light source and an observer that is capable of bending the light from the source as the light travels toward the observer. This effect is known ...
effects in the direction of the Small Magellanic Cloud and Large Magellanic Cloud did not detect the number and type of lensing events expected if brown dwarfs made up a significant fraction of dark matter.


Theoretical considerations

Theoretical work simultaneously also showed that ancient MACHOs are not likely to account for the large amounts of dark matter now thought to be present in the universe. The Big Bang as it is currently understood could not have produced enough
baryons In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classified ...
and still be consistent with the observed elemental abundances, including the abundance of
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
. Furthermore, separate observations of
baryon acoustic oscillations In cosmology, baryon acoustic oscillations (BAO) are fluctuations in the density of the visible baryonic matter (normal matter) of the universe, caused by acoustic density waves in the primordial plasma of the early universe. In the same way ...
, both in the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
and large-scale structure of galaxies, set limits on the ratio of baryons to the total amount of matter. These observations show that a large fraction of non-baryonic matter is necessary regardless of the presence or absence of MACHOs; however MACHO candidates such as primordial black holes could be formed of non-baryonic matter (from pre-baryonic epochs of the early Big Bang).


See also

* Weakly interacting massive particles (WIMPS), an alternative theory of dark matter * Robust associations of massive baryonic objects (RAMBOs) *
MACHO Project In astronomy, the MACHO Project was an observational search during 1992-1999 for dark matter around our Milky Way galaxy in the form of hypothetical Massive Compact Halo Objects (MACHOs), using the method of gravitational microlensing. It was one o ...
, an observational search for MACHOs


References

{{Dark matter Dark matter Exotic matter