Lorentz invariance in loop quantum gravity
   HOME

TheInfoList



OR:

Lorentz invariance In a relativistic theory of physics, a Lorentz scalar is an expression, formed from items of the theory, which evaluates to a scalar, invariant under any Lorentz transformation. A Lorentz scalar may be generated from e.g., the scalar product of ve ...
measures the universal features in hypothetical
loop quantum gravity Loop quantum gravity (LQG) is a theory of quantum gravity, which aims to merge quantum mechanics and general relativity, incorporating matter of the Standard Model into the framework established for the pure quantum gravity case. It is an attem ...
universes. The various hypothetical
multiverse The multiverse is a hypothetical group of multiple universes. Together, these universes comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The di ...
loop quantum gravity universe design models could have various general covariant principle results. Because loop quantum gravity models universes, space gravity theories are contenders to build and answer unification theory; the Lorentz invariance helps grade the spread of universal features throughout a proposed multiverse in time.


Grand Unification Epoch

The Grand Unification Epoch is the era in time in the
chronology of the universe The chronology of the universe describes the history and future of the universe according to Big Bang cosmology. Research published in 2015 estimates the earliest stages of the universe's existence as taking place 13.8 billion years ago, wit ...
where no elementary particles existed, and the three gauge interactions of the Standard Model which define the electromagnetic, weak, and strong interactions or forces, are merged into one single force. Convention says that 3 minutes after the Big Bang,
protons A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
and neutrons began to come together to form the nuclei of simple elements. Whereas, loop quantum gravity theories place the origin and the age of elementary particles and the age of Lorentz invariance, beyond 13.799 ± 0.021 billion years ago. The permanence of our Lorentz invariance constants is based on elementary particles and their features. There are eons of time before the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
to build the universe from black holes and older multiverses. There is a selective process that creates features in elementary particles, like accept, store and give
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
. In the books of
Lee Smolin Lee Smolin (; born June 6, 1955) is an American theoretical physicist, a faculty member at the Perimeter Institute for Theoretical Physics, an adjunct professor of physics at the University of Waterloo and a member of the graduate faculty of the ...
about loop quantum gravity, this theory contains the evolutionary ideas of "reproduction" and "mutation" of universes, and elementary particles, so is formally analogous to models of population biology.


Earlier universes

In the early universes before the Big Bang, there are theories that loop quantum gravity loop quantum structures formed space. The Lorentz invariance and universal constants describe elementary particles that do not exist yet. Fecund universes is a multiverse theory by Lee Smolin about the role of
black holes A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
. The theory has black holes and loop quantum gravity connecting early universes together. Loop quantum gravity can be pulled into black holes. In Fecund universes, each new universe, according to Lee Smolin, has slightly different laws of physics. Because these laws are only slightly different, each is assumed to be like a mutation of the early universes.


Minkowski spacetime

Loop quantum gravity Loop quantum gravity (LQG) is a theory of quantum gravity, which aims to merge quantum mechanics and general relativity, incorporating matter of the Standard Model into the framework established for the pure quantum gravity case. It is an attem ...
(LQG) is a quantization of a classical
Lagrangian Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
classical field theory. It is equivalent to the usual
Einstein–Cartan theory In theoretical physics, the Einstein–Cartan theory, also known as the Einstein–Cartan–Sciama–Kibble theory, is a classical theory of gravitation similar to general relativity. The theory was first proposed by Élie Cartan in 1922. Einstein ...
in that it leads to the same
equations of motion In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.''Encyclopaedia of Physics'' (second Edition), R.G. Lerner, G.L. Trigg, VHC Publishers, 1991, ISBN (Ver ...
describing
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
with
torsion Torsion may refer to: Science * Torsion (mechanics), the twisting of an object due to an applied torque * Torsion of spacetime, the field used in Einstein–Cartan theory and ** Alternatives to general relativity * Torsion angle, in chemistry Bi ...
. As such, it can be argued that LQG respects local
Lorentz invariance In a relativistic theory of physics, a Lorentz scalar is an expression, formed from items of the theory, which evaluates to a scalar, invariant under any Lorentz transformation. A Lorentz scalar may be generated from e.g., the scalar product of ve ...
. Global Lorentz invariance is broken in LQG just like it is broken in general relativity (unless one is dealing with
Minkowski spacetime In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inert ...
, which is one particular solution of the Einstein field equations). On the other hand, there has been much talk about possible local and global violations of Lorentz invariance beyond those expected in straightforward general relativity. Of interest in this connection would be to see whether the LQG analogue of Minkowski spacetime breaks or preserves global Lorentz invariance, and
Carlo Rovelli Carlo Rovelli (born May 3, 1956) is an Italian theoretical physicist and writer who has worked in Italy, the United States and, since 2000, in France. He is also currently a Distinguished Visiting Research Chair at the Perimeter Institute, and c ...
and coworkers have recently been investigating the Minkowski state of LQG using
spin foam In physics, the topological structure of spinfoam or spin foam consists of two-dimensional faces representing a configuration required by functional integration to obtain a Feynman's path integral description of quantum gravity. These structur ...
techniques. These questions will all remain open as long as the
classical limit The classical limit or correspondence limit is the ability of a physical theory to approximate or "recover" classical mechanics when considered over special values of its parameters. The classical limit is used with physical theories that predict n ...
s of various LQG models (see below for the sources of variation) cannot be calculated.


Lie algebras and loop quantum gravity

Mathematically LQG is local gauge theory of the
self-dual In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a Injective function, one-to-one fashion, often (but not always) by means of an Involution (mathematics), involutio ...
subgroup of the complexified Lorentz group, which is related to the action of the
Lorentz group In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicis ...
on
Weyl spinor In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three p ...
s commonly used in
elementary particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and b ...
. This is partly a matter of mathematical convenience, as it results in a
compact group In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural gen ...
SO(3) or SU(2) as gauge group, as opposed to the non-compact groups SO(3,1) or SL(2.C). The compactness of the
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
avoids some thus-far unsolved difficulties in the quantization of gauge theories of noncompact lie groups, and is responsible for the discreteness of the area and volume spectra. The theory involving the Immirzi parameter is necessary to resolve an ambiguity in the process of complexification. These are some of the many ways in which different quantizations of the same classical theory can result in inequivalent quantum theories, or even in the impossibility to carry quantization through. One can't distinguish between SO(3) and SU(2) or between SO(3,1) and SL(2,C) at this level: the respective
Lie algebras In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identi ...
are the same. In fact, all four groups have the same complexified Lie algebra, which makes matters even more confusing (these subtleties are usually ignored in elementary particle physics). The physical interpretation of the Lie algebra is that of infinitesimally small group transformations, and
gauge bosons In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles, whose interactions are described by a gauge theory, interact with each other by the exchange of gauge ...
(such as the
graviton In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathem ...
) are Lie algebra representations, not Lie group representations. What this means for the Lorentz group is that, for sufficiently small velocity parameters, all four complexified Lie groups are indistinguishable in the absence of matter fields. To make matters more complicated, it can be shown that a positive
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field equ ...
can be realized in LQG by replacing the Lorentz group with the corresponding
quantum group In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups (which are quasitriangular Hopf algebras) ...
. At the level of the Lie algebra, this corresponds to what is called q-deforming the Lie algebra, and the parameter q is related to the value of the cosmological constant. The effect of replacing a Lie algebra by a q-deformed version is that the series of its representations is truncated (in the case of the rotation group, instead of having representations labelled by all half-integral spins, one is left with all representations with total spin j less than some constant). It is entirely possible to formulate LQG in terms of q-deformed Lie algebras instead of ordinary Lie algebras, and in the case of the Lorentz group the result would, again, be indistinguishable for sufficiently small velocity parameters.


Spin networks loop quantum gravity

In the spin-foam formalism, the
Barrett–Crane model The Barrett–Crane model is a model in quantum gravity, first published in 1998, which was defined using the Plebanski action. The B field in the action is supposed to be a so(3, 1)-valued 2-form, i.e. taking values in the Lie algebra of a s ...
, which was for a while the most promising state-sum model of 4D Lorentzian quantum gravity, was based on representations of the noncompact groups SO(3,1) or SL(2,C), so the spin foam faces (and hence the spin network edges) were labelled by positive real numbers as opposed to the half-integer labels of SU(2) spin networks. These and other considerations, including difficulties interpreting what it would mean to apply a Lorentz transformation to a spin network state, led
Lee Smolin Lee Smolin (; born June 6, 1955) is an American theoretical physicist, a faculty member at the Perimeter Institute for Theoretical Physics, an adjunct professor of physics at the University of Waterloo and a member of the graduate faculty of the ...
and others to suggest that spin network states must break Lorentz invariance. Lee Smolin and Joao Magueijo then went on to study
doubly special relativity Doubly special relativity (DSR) – also called deformed special relativity or, by some, extra-special relativity – is a modified theory of special relativity in which there is not only an observer-independent maximum velocity (the speed of ligh ...
, in which not only there is a constant velocity c but also a constant distance l. They showed that there are nonlinear representations of the Lorentz Lie algebra with these properties (the usual Lorentz group being obtained from a linear representation). Doubly special relativity predicts deviations from the special relativity
dispersion relation In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the d ...
at large energies (corresponding to small wavelengths of the order of the constant length l in the doubly special theory).
Giovanni Amelino-Camelia Giovanni Amelino-Camelia (born 14 December 1965, Naples) is an Italian physicist of the University of Naples Federico II who works on quantum gravity. He is the first proposer of doubly special relativity that is the idea of introducing the Pla ...
then proposed that the mystery of ultra-high-energy cosmic rays might be solved by assuming such violations of the special-relativity dispersion relation for photons. Phenomenological (hence, not specific to LQG) constraints on anomalous dispersion relations can be obtained by considering a variety of astrophysical experimental data, of which high-energy cosmic rays are but one part. Current observations are already able to place exceedingly stringent constraints on these phenomenological parameters.


References

{{Reflist Loop quantum gravity