Livermorium
   HOME

TheInfoList



OR:

Livermorium is a
synthetic Synthetic things are composed of multiple parts, often with the implication that they are artificial. In particular, 'synthetic' may refer to: Science * Synthetic chemical or compound, produced by the process of chemical synthesis * Synthetic ...
chemical element A chemical element is a species of atoms that have a given number of protons in their atomic nucleus, nuclei, including the pure Chemical substance, substance consisting only of that species. Unlike chemical compounds, chemical elements canno ...
with the
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
Lv and has an
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of ever ...
of 116. It is an extremely
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
element that has only been created in a laboratory setting and has not been observed in nature. The element is named after the
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a federal research facility in Livermore, California, United States. The lab was originally established as the University of California Radiation Laboratory, Livermore Branch in 1952 in response ...
in the United States, which collaborated with the
Joint Institute for Nuclear Research The Joint Institute for Nuclear Research (JINR, russian: Объединённый институт ядерных исследований, ОИЯИ), in Dubna, Moscow Oblast (110 km north of Moscow), Russia, is an international research c ...
(JINR) in
Dubna Dubna ( rus, Дубна́, p=dʊbˈna) is a town in Moscow Oblast, Russia. It has a status of ''naukograd'' (i.e. town of science), being home to the Joint Institute for Nuclear Research, an international nuclear physics research center and one o ...
, Russia to discover livermorium during experiments conducted between 2000 and 2006. The name of the laboratory refers to the city of
Livermore, California Livermore (formerly Livermorès, Livermore Ranch, and Nottingham) is a city in Alameda County, California. With a 2020 population of 87,955, Livermore is the most populous city in the Tri-Valley. It is located on the eastern edge of Californi ...
, where it is located, which in turn was named after the rancher and landowner
Robert Livermore Robert Thomas Livermore, also known as Don Roberto Livermore, (c. 3 November 1799 – 14 February 1858) was an English-born Californian ranchero. He emigrated to Alta California in 1822, eventually becoming a Mexican citizen and a prominent lando ...
. The name was adopted by
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
on May 30, 2012. Four
isotopes of livermorium Livermorium (116Lv) is an artificial element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 293Lv in 2000. There are four known radioisotopes fro ...
are known, with
mass number The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxima ...
s between 290 and 293 inclusive; the longest-lived among them is livermorium-293 with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ...
of about 60 
millisecond A millisecond (from '' milli-'' and second; symbol: ms) is a unit of time in the International System of Units (SI) equal to one thousandth (0.001 or 10−3 or 1/1000) of a second and to 1000 microseconds. A unit of 10 milliseconds may be calle ...
s. A fifth possible isotope with mass number 294 has been reported but not yet confirmed. In the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
, it is a
p-block A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term appears to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-blo ...
transactinide element Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, are the chemical elements with atomic number greater than 103. The superheavy elements are those beyond the actinides in the periodic table; the l ...
. It is a member of the 7th period and is placed in group 16 as the heaviest
chalcogen The chalcogens (ore forming) ( ) are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioac ...
, but it has not been confirmed to behave as the heavier homologue to the chalcogen
polonium Polonium is a chemical element with the symbol Po and atomic number 84. Polonium is a chalcogen. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic character ...
. Livermorium is calculated to have some similar properties to its lighter homologues (
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
,
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formul ...
,
selenium Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, ...
,
tellurium Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionall ...
, and polonium), and be a
post-transition metal The metallic elements in the periodic table located between the transition metals and the chemically weak nonmetallic metalloids have received many names in the literature, such as ''post-transition metals'', ''poor metals'', ''other metals'', ...
, though it should also show several major differences from them.


Introduction


History


Unsuccessful synthesis attempts

The first search for element 116, using the reaction between 248Cm and 48Ca, was performed in 1977 by Ken Hulet and his team at the
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a federal research facility in Livermore, California, United States. The lab was originally established as the University of California Radiation Laboratory, Livermore Branch in 1952 in response ...
(LLNL). They were unable to detect any atoms of livermorium. Yuri Oganessian and his team at the Flerov Laboratory of Nuclear Reactions (FLNR) in the
Joint Institute for Nuclear Research The Joint Institute for Nuclear Research (JINR, russian: Объединённый институт ядерных исследований, ОИЯИ), in Dubna, Moscow Oblast (110 km north of Moscow), Russia, is an international research c ...
(JINR) subsequently attempted the reaction in 1978 and met failure. In 1985, in a joint experiment between Berkeley and Peter Armbruster's team at GSI, the result was again negative, with a calculated cross section limit of 10–100 pb. Work on reactions with 48Ca, which had proved very useful in the synthesis of
nobelium Nobelium is a synthetic chemical element with the symbol No and atomic number 102. It is named in honor of Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transuranic element and is the penul ...
from the natPb+48Ca reaction, nevertheless continued at Dubna, with a superheavy element separator being developed in 1989, a search for target materials and starting of collaborations with LLNL being started in 1990, production of more intense 48Ca beams being started in 1996, and preparations for long-term experiments with 3 orders of magnitude higher sensitivity being performed in the early 1990s. This work led directly to the production of new isotopes of elements 112 to 118 in the reactions of 48Ca with actinide targets and the discovery of the 5 heaviest elements on the periodic table:
flerovium Flerovium is a superheavy chemical element with symbol Fl and atomic number 114. It is an extremely radioactive synthetic element. It is named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dub ...
, moscovium, livermorium,
tennessine Tennessine is a synthetic chemical element with the symbol Ts and atomic number 117. It is the second-heaviest known element and the penultimate element of the 7th period of the periodic table. The discovery of tennessine was officially anno ...
, and oganesson. In 1995, an international team led by
Sigurd Hofmann Sigurd Hofmann (15 February 1944 – 17 June 2022) was a physicist known for his work on superheavy elements. Biography Hofmann discovered his love for physics at the Max Planck High School in Groß-Umstadt, Germany, where he graduated in 19 ...
at the
Gesellschaft für Schwerionenforschung The GSI Helmholtz Centre for Heavy Ion Research (german: GSI Helmholtzzentrum für Schwerionenforschung) is a federally and state co-funded heavy ion () research center in the Wixhausen suburb of Darmstadt, Germany. It was founded in 1969 as th ...
(GSI) in
Darmstadt Darmstadt () is a city in the state of Hesse in Germany, located in the southern part of the Rhine-Main-Area (Frankfurt Metropolitan Region). Darmstadt has around 160,000 inhabitants, making it the fourth largest city in the state of Hesse ...
,
Germany Germany,, officially the Federal Republic of Germany, is a country in Central Europe. It is the second most populous country in Europe after Russia, and the most populous member state of the European Union. Germany is situated betwee ...
attempted to synthesise element 116 in a radiative capture reaction (in which the compound nucleus de-excites through pure
gamma emission A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
without evaporating neutrons) between a
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
-208 target and
selenium Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, ...
-82 projectiles. No atoms of element 116 were identified.


Unconfirmed discovery claims

In late 1998, Polish physicist Robert Smolańczuk published calculations on the fusion of atomic nuclei towards the synthesis of superheavy atoms, including elements 118 and 116. His calculations suggested that it might be possible to make these two elements by fusing
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
with
krypton Krypton (from grc, κρυπτός, translit=kryptos 'the hidden one') is a chemical element with the symbol Kr and atomic number 36. It is a colorless, odorless, tasteless noble gas that occurs in trace amounts in the atmosphere and is of ...
under carefully controlled conditions. In 1999, researchers at
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory (LBNL), commonly referred to as the Berkeley Lab, is a United States national laboratory that is owned by, and conducts scientific research on behalf of, the United States Department of Energy. Located in ...
made use of these predictions and announced the discovery of elements 118 and 116, in a paper published in ''
Physical Review Letters ''Physical Review Letters'' (''PRL''), established in 1958, is a peer-reviewed, scientific journal that is published 52 times per year by the American Physical Society. As also confirmed by various measurement standards, which include the ''Journa ...
'', and very soon after the results were reported in ''
Science Science is a systematic endeavor that builds and organizes knowledge in the form of testable explanations and predictions about the universe. Science may be as old as the human species, and some of the earliest archeological evidence ...
''. The researchers reported to have performed the
reaction Reaction may refer to a process or to a response to an action, event, or exposure: Physics and chemistry *Chemical reaction *Nuclear reaction * Reaction (physics), as defined by Newton's third law *Chain reaction (disambiguation). Biology and m ...
: + → + → + α The following year, they published a retraction after researchers at other laboratories were unable to duplicate the results and the Berkeley lab itself was unable to duplicate them as well. In June 2002, the director of the lab announced that the original claim of the discovery of these two elements had been based on data fabricated by principal author Victor Ninov.


Discovery

Livermorium was first synthesized on July 19, 2000, when scientists at
Dubna Dubna ( rus, Дубна́, p=dʊbˈna) is a town in Moscow Oblast, Russia. It has a status of ''naukograd'' (i.e. town of science), being home to the Joint Institute for Nuclear Research, an international nuclear physics research center and one o ...
(
JINR The Joint Institute for Nuclear Research (JINR, russian: Объединённый институт ядерных исследований, ОИЯИ), in Dubna, Moscow Oblast (110 km north of Moscow), Russia, is an international research c ...
) bombarded a
curium-248 Curium (96Cm) is an artificial element with an atomic number of 96. Because it is an artificial element, a standard atomic weight cannot be given, and it has no stable isotopes. The first isotope synthesized was 242Cm in 1944, which has 146 neutro ...
target with accelerated calcium-48 ions. A single atom was detected, decaying by
alpha emission Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an at ...
with decay energy 10.54  MeV to an isotope of
flerovium Flerovium is a superheavy chemical element with symbol Fl and atomic number 114. It is an extremely radioactive synthetic element. It is named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dub ...
. The results were published in December 2000. : + → * → + 3 → + α The
daughter A daughter is a female offspring; a girl or a woman in relation to her parents. Daughterhood is the state of being someone's daughter. The male counterpart is a son. Analogously the name is used in several areas to show relations between groups ...
flerovium isotope had properties matching those of a flerovium isotope first synthesized in June 1999, which was originally assigned to 288Fl, implying an assignment of the parent livermorium isotope to 292Lv. Later work in December 2002 indicated that the synthesized flerovium isotope was actually 289Fl, and hence the assignment of the synthesized livermorium atom was correspondingly altered to 293Lv.


Road to confirmation

Two further atoms were reported by the institute during their second experiment during April–May 2001.248Cm(48Ca,4n)292116 experiment"">"Confirmed results of the 248Cm(48Ca,4n)292116 experiment"
, ''Patin et al.'', ''LLNL report (2003)''. Retrieved 2008-03-03
In the same experiment they also detected a decay chain which corresponded to the first observed decay of
flerovium Flerovium is a superheavy chemical element with symbol Fl and atomic number 114. It is an extremely radioactive synthetic element. It is named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dub ...
in December 1998, which had been assigned to 289Fl. No flerovium isotope with the same properties as the one found in December 1998 has ever been observed again, even in repeats of the same reaction. Later it was found that 289Fl has different decay properties and that the first observed flerovium atom may have been its
nuclear isomer A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy higher energy levels than in the ground state of the same nucleus. "Metastable" describes nuclei whose excited states have ...
289mFl. The observation of 289mFl in this series of experiments may indicate the formation of a parent isomer of livermorium, namely 293mLv, or a rare and previously unobserved decay branch of the already-discovered state 293Lv to 289mFl. Neither possibility is certain, and research is required to positively assign this activity. Another possibility suggested is the assignment of the original December 1998 atom to 290Fl, as the low beam energy used in that original experiment makes the 2n channel plausible; its parent could then conceivably be 294Lv, but this assignment would still need confirmation in the 248Cm(48Ca,2n)294Lv reaction. The team repeated the experiment in April–May 2005 and detected 8 atoms of livermorium. The measured decay data confirmed the assignment of the first-discovered
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass num ...
as 293Lv. In this run, the team also observed the isotope 292Lv for the first time. In further experiments from 2004 to 2006, the team replaced the curium-248 target with the lighter
curium Curium is a transuranic, radioactive chemical element with the symbol Cm and atomic number 96. This actinide element was named after eminent scientists Marie and Pierre Curie, both known for their research on radioactivity. Curium was first in ...
isotope curium-245. Here evidence was found for the two isotopes 290Lv and 291Lv. In May 2009, the
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
/ IUPAP Joint Working Party reported on the discovery of
copernicium Copernicium is a synthetic chemical element with the symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of ap ...
and acknowledged the discovery of the isotope 283Cn. This implied the ''de facto'' discovery of the isotope 291Lv, from the acknowledgment of the data relating to its granddaughter 283Cn, although the livermorium data was not absolutely critical for the demonstration of copernicium's discovery. Also in 2009, confirmation from Berkeley and the
Gesellschaft für Schwerionenforschung The GSI Helmholtz Centre for Heavy Ion Research (german: GSI Helmholtzzentrum für Schwerionenforschung) is a federally and state co-funded heavy ion () research center in the Wixhausen suburb of Darmstadt, Germany. It was founded in 1969 as th ...
(GSI) in Germany came for the flerovium isotopes 286 to 289, immediate daughters of the four known livermorium isotopes. In 2011, IUPAC evaluated the Dubna team experiments of 2000–2006. Whereas they found the earliest data (not involving 291Lv and 283Cn) inconclusive, the results of 2004–2006 were accepted as identification of livermorium, and the element was officially recognized as having been discovered. The synthesis of livermorium has been separately confirmed at the GSI (2012) and RIKEN (2014 and 2016). In the 2012 GSI experiment, one chain tentatively assigned to 293Lv was shown to be inconsistent with previous data; it is believed that this chain may instead originate from an isomeric state, 293mLv. In the 2016 RIKEN experiment, one atom that may be assigned to 294Lv was seemingly detected, alpha decaying to 290Fl and 286Cn, which underwent spontaneous fission; however, the first alpha from the livermorium nuclide produced was missed, and the assignment to 294Lv is still uncertain though plausible.


Naming

Using Mendeleev's nomenclature for unnamed and undiscovered elements, livermorium is sometimes called ''eka-
polonium Polonium is a chemical element with the symbol Po and atomic number 84. Polonium is a chalcogen. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic character ...
''. In 1979 IUPAC recommended that the
placeholder Placeholder may refer to: Language * Placeholder name, a term or terms referring to something or somebody whose name is not known or, in that particular context, is not significant or relevant. * Filler text, text generated to fill space or provi ...
systematic element name ''ununhexium'' (''Uuh'') be used until the discovery of the element was confirmed and a name was decided. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations were mostly ignored among scientists in the field, " who called it "element 116", with the symbol of ''E116'', ''(116)'', or even simply ''116''. According to IUPAC recommendations, the discoverer or discoverers of a new element have the right to suggest a name. The discovery of livermorium was recognized by the Joint Working Party (JWP) of IUPAC on 1 June 2011, along with that of
flerovium Flerovium is a superheavy chemical element with symbol Fl and atomic number 114. It is an extremely radioactive synthetic element. It is named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dub ...
. According to the vice-director of JINR, the Dubna team originally wanted to name element 116 ''moscovium'', after the
Moscow Oblast Moscow Oblast ( rus, Моско́вская о́бласть, r=Moskovskaya oblast', p=mɐˈskofskəjə ˈobləsʲtʲ), or Podmoskovye ( rus, Подмоско́вье, p=pədmɐˈskovʲjə, literally " under Moscow"), is a federal subject of R ...
in which Dubna is located,: Mikhail Itkis, the vice-director of JINR stated: "We would like to name element 114 after Georgy Flerov – flerovium, and another one lement 116– moscovium, not after Moscow, but after
Moscow Oblast Moscow Oblast ( rus, Моско́вская о́бласть, r=Moskovskaya oblast', p=mɐˈskofskəjə ˈobləsʲtʲ), or Podmoskovye ( rus, Подмоско́вье, p=pədmɐˈskovʲjə, literally " under Moscow"), is a federal subject of R ...
".
but it was later decided to use this name for element 115 instead. The name ''livermorium'' and the symbol ''Lv'' were adopted on May 23, 2012. The name recognises the
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a federal research facility in Livermore, California, United States. The lab was originally established as the University of California Radiation Laboratory, Livermore Branch in 1952 in response ...
, within the city of
Livermore, California Livermore (formerly Livermorès, Livermore Ranch, and Nottingham) is a city in Alameda County, California. With a 2020 population of 87,955, Livermore is the most populous city in the Tri-Valley. It is located on the eastern edge of Californi ...
, US, which collaborated with JINR on the discovery. The city in turn is named after the American rancher
Robert Livermore Robert Thomas Livermore, also known as Don Roberto Livermore, (c. 3 November 1799 – 14 February 1858) was an English-born Californian ranchero. He emigrated to Alta California in 1822, eventually becoming a Mexican citizen and a prominent lando ...
, a naturalized Mexican citizen of English birth. The naming ceremony for flerovium and livermorium was held in Moscow on October 24, 2012.


Predicted properties

Other than nuclear properties, no properties of livermorium or its compounds have been measured; this is due to its extremely limited and expensive production and the fact that it decays very quickly. Properties of livermorium remain unknown and only predictions are available.


Nuclear stability and isotopes

Livermorium is expected to be near an island of stability centered on
copernicium Copernicium is a synthetic chemical element with the symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of ap ...
(element 112) and
flerovium Flerovium is a superheavy chemical element with symbol Fl and atomic number 114. It is an extremely radioactive synthetic element. It is named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dub ...
(element 114). Due to the expected high
fission barrier In nuclear physics and nuclear chemistry, the fission barrier is the activation energy required for a nucleus of an atom to undergo fission. This barrier may also be defined as the minimum amount of energy required to deform the nucleus to the p ...
s, any nucleus within this island of stability exclusively decays by alpha decay and perhaps some electron capture and
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
. While the known isotopes of livermorium do not actually have enough neutrons to be on the island of stability, they can be seen to approach the island, as the heavier isotopes are generally the longer-lived ones. Superheavy elements are produced by
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manife ...
. These fusion reactions can be divided into "hot" and "cold" fusion, depending on the excitation energy of the compound nucleus produced. In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
s), giving rise to compound nuclei at high excitation energy (~40–50  MeV) that may either fission or evaporate several (3 to 5) neutrons. In cold fusion reactions (which use heavier projectiles, typically from the fourth period, and lighter targets, usually
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
and
bismuth Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs ...
), the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
, they require emission of only one or two neutrons. Hot fusion reactions tend to produce more neutron-rich products because the actinides have the highest neutron-to-proton ratios of any elements that can presently be made in macroscopic quantities. Important information could be gained regarding the properties of superheavy nuclei by the synthesis of more livermorium isotopes, specifically those with a few neutrons more or less than the known ones – 286Lv, 287Lv, 288Lv, 289Lv, 294Lv, and 295Lv. This is possible because there are many reasonably long-lived isotopes of curium that can be used to make a target. The light isotopes can be made by fusing curium-243 with calcium-48. They would undergo a chain of alpha decays, ending at
transactinide Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, are the chemical elements with atomic number greater than 103. The superheavy elements are those beyond the actinides in the periodic table; the l ...
isotopes that are too light to achieve by hot fusion and too heavy to be produced by cold fusion. The synthesis of the heavy isotopes 294Lv and 295Lv could be accomplished by fusing the heavy curium isotope
curium-250 Curium (96Cm) is an artificial element with an atomic number of 96. Because it is an artificial element, a standard atomic weight cannot be given, and it has no stable isotopes. The first isotope synthesized was 242Cm in 1944, which has 146 neu ...
with calcium-48. The cross section of this nuclear reaction would be about 1  picobarn, though it is not yet possible to produce 250Cm in the quantities needed for target manufacture. After a few alpha decays, these livermorium isotopes would reach nuclides at the line of beta stability. Additionally,
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. ...
may also become an important decay mode in this region, allowing affected nuclei to reach the middle of the island. For example, it is predicted that 295Lv would alpha decay to 291 Fl, which would undergo successive electron capture to 291Nh and then 291 Cn which is expected to be in the middle of the island of stability and have a half-life of about 1200 years, affording the most likely hope of reaching the middle of the island using current technology. A drawback is that the decay properties of superheavy nuclei this close to the line of beta stability are largely unexplored. Other possibilities to synthesize nuclei on the island of stability include quasifission (partial fusion followed by fission) of a massive nucleus. Such nuclei tend to fission, expelling doubly magic or nearly doubly magic fragments such as
calcium-40 Calcium (20Ca) has 26 known isotopes, ranging from 35Ca to 60Ca. There are five stable isotopes (40Ca, 42Ca, 43Ca, 44Ca and 46Ca), plus one isotope ( 48Ca) with such a long half-life that for all practical purposes it can be considered stable. T ...
, tin-132,
lead-208 Lead (82Pb) has four stable isotopes: 204Pb, 206Pb, 207Pb, 208Pb. Lead-204 is entirely a primordial nuclide and is not a radiogenic nuclide. The three isotopes lead-206, lead-207, and lead-208 represent the ends of three decay chains: the urani ...
, or
bismuth-209 Bismuth-209 (209Bi) is the isotope of bismuth with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number of 126 neutrons, and an atomic mass of 208.9803987 amu (atomic mass un ...
. Recently it has been shown that the multi-nucleon transfer reactions in collisions of actinide nuclei (such as
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
and
curium Curium is a transuranic, radioactive chemical element with the symbol Cm and atomic number 96. This actinide element was named after eminent scientists Marie and Pierre Curie, both known for their research on radioactivity. Curium was first in ...
) might be used to synthesize the neutron-rich superheavy nuclei located at the island of stability, although formation of the lighter elements
nobelium Nobelium is a synthetic chemical element with the symbol No and atomic number 102. It is named in honor of Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transuranic element and is the penul ...
or
seaborgium Seaborgium is a synthetic chemical element with the symbol Sg and atomic number 106. It is named after the American nuclear chemist Glenn T. Seaborg. As a synthetic element, it can be created in a laboratory but is not found in nature. It is al ...
is more favored. One last possibility to synthesize isotopes near the island is to use controlled
nuclear explosion A nuclear explosion is an explosion that occurs as a result of the rapid release of energy from a high-speed nuclear reaction. The driving reaction may be nuclear fission or nuclear fusion or a multi-stage cascading combination of the two, ...
s to create a
neutron flux The neutron flux, φ, is a scalar quantity used in nuclear physics and nuclear reactor physics. It is the total length travelled by all free neutrons per unit time and volume. Equivalently, it can be defined as the number of neutrons travellin ...
high enough to bypass the gaps of instability at 258–260 Fm and at
mass number The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxima ...
275 (atomic numbers 104 to 108), mimicking the
r-process In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for the creation of approximately half of the atomic nuclei heavier than iron, the "heavy elements", ...
in which the
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
s were first produced in nature and the gap of instability around
radon Radon is a chemical element with the symbol Rn and atomic number 86. It is a radioactive, colourless, odourless, tasteless noble gas. It occurs naturally in minute quantities as an intermediate step in the normal radioactive decay chains th ...
bypassed. Some such isotopes (especially 291Cn and 293Cn) may even have been synthesized in nature, but would have decayed away far too quickly (with half-lives of only thousands of years) and be produced in far too small quantities (about 10−12 the abundance of
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
) to be detectable as
primordial nuclide In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the ...
s today outside
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
s.


Physical and atomic

In the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
, livermorium is a member of group 16, the chalcogens. It appears below
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
,
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formul ...
,
selenium Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, ...
,
tellurium Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionall ...
, and polonium. Every previous chalcogen has six electrons in its valence shell, forming a
valence electron In chemistry and physics, a valence electron is an electron in the outer shell associated with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed. In a single covalent bond, a shared pair form ...
configuration of ns2np4. In livermorium's case, the trend should be continued and the valence electron configuration is predicted to be 7s27p4; therefore, livermorium will have some similarities to its lighter congeners. Differences are likely to arise; a large contributing effect is the spin–orbit (SO) interaction—the mutual interaction between the electrons' motion and
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally ...
. It is especially strong for the superheavy elements, because their electrons move much faster than in lighter atoms, at velocities comparable to the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
. In relation to livermorium atoms, it lowers the 7s and the 7p electron energy levels (stabilizing the corresponding electrons), but two of the 7p electron energy levels are stabilized more than the other four. The stabilization of the 7s electrons is called the inert pair effect, and the effect "tearing" the 7p subshell into the more stabilized and the less stabilized parts is called subshell splitting. Computation chemists see the split as a change of the second (
azimuthal An azimuth (; from ar, اَلسُّمُوت, as-sumūt, the directions) is an angular measurement in a spherical coordinate system. More specifically, it is the horizontal angle from a cardinal direction, most commonly north. Mathematically, ...
)
quantum number In quantum physics and chemistry, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian—quantities that can ...
''l'' from 1 to and for the more stabilized and less stabilized parts of the 7p subshell, respectively: the 7p1/2 subshell acts as a second inert pair, though not as inert as the 7s electrons, while the 7p3/2 subshell can easily participate in chemistry. For many theoretical purposes, the valence electron configuration may be represented to reflect the 7p subshell split as 7s7p7p. Inert pair effects in livermorium should be even stronger than in polonium and hence the +2
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
becomes more stable than the +4 state, which would be stabilized only by the most
electronegative Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elect ...
s; this is reflected in the expected
ionization energies Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecul ...
of livermorium, where there are large gaps between the second and third ionization energies (corresponding to the breaching of the unreactive 7p1/2 shell) and fourth and fifth ionization energies. Indeed, the 7s electrons are expected to be so inert that the +6 state will not be attainable. The
melting Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which in ...
and
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding env ...
s of livermorium are expected to continue the trends down the chalcogens; thus livermorium should melt at a higher temperature than polonium, but boil at a lower temperature. It should also be
denser Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically ...
than polonium (α-Lv: 12.9 g/cm3; α-Po: 9.2 g/cm3); like polonium it should also form an α and a β allotrope. The electron of a hydrogen-like livermorium atom (oxidized so that it only has one electron, Lv115+) is expected to move so fast that it has a mass 1.86 times that of a stationary electron, due to
relativistic effects Relativistic quantum chemistry combines relativistic mechanics with quantum chemistry to calculate elemental properties and structure, especially for the heavier elements of the periodic table. A prominent example is an explanation for the color of ...
. For comparison, the figures for hydrogen-like polonium and tellurium are expected to be 1.26 and 1.080 respectively.


Chemical

Livermorium is projected to be the fourth member of the 7p series of
chemical element A chemical element is a species of atoms that have a given number of protons in their atomic nucleus, nuclei, including the pure Chemical substance, substance consisting only of that species. Unlike chemical compounds, chemical elements canno ...
s and the heaviest member of group 16 in the periodic table, below polonium. While it is the least theoretically studied of the 7p elements, its chemistry is expected to be quite similar to that of polonium. The group oxidation state of +6 is known for all the chalcogens apart from oxygen which cannot expand its octet and is one of the strongest
oxidizing agents An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ). In other words, an o ...
among the chemical elements. Oxygen is thus limited to a maximum +2 state, exhibited in the fluoride OF2. The +4 state is known for
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formul ...
,
selenium Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, ...
,
tellurium Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionall ...
, and polonium, undergoing a shift in stability from reducing for sulfur(IV) and selenium(IV) through being the most stable state for tellurium(IV) to being oxidizing in polonium(IV). This suggests a decreasing stability for the higher oxidation states as the group is descended due to the increasing importance of relativistic effects, especially the inert pair effect. The most stable oxidation state of livermorium should thus be +2, with a rather unstable +4 state. The +2 state should be about as easy to form as it is for
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to for ...
and
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ...
, and the +4 state should only be achieved with strongly electronegative ligands, such as in livermorium(IV) fluoride (LvF4). The +6 state should not exist at all due to the very strong stabilization of the 7s electrons, making the valence core of livermorium only four electrons. The lighter chalcogens are also known to form a −2 state as
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
,
sulfide Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. ''Sulfide'' also refers to chemical compounds la ...
, selenide, telluride, and
polonide A polonide is a chemical compound of the radioactive element polonium with any element less electronegative than polonium. Polonides are usually prepared by a direct reaction between the elements at temperatures of around 300–400 °C... They a ...
; due to the destabilization of livermorium's 7p3/2 subshell, the −2 state should be very unstable for livermorium, whose chemistry should be essentially purely cationic, though the larger subshell and spinor energy splittings of livermorium as compared to polonium should make Lv2− slightly less unstable than expected. Livermorium hydride (LvH2) would be the heaviest chalcogen hydride and the heaviest homolog of
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
(the lighter ones are H2S, H2Se, H2Te, and PoH2). Polane (polonium hydride) is a more
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
compound than most metal hydrides because polonium straddles the border between
metal A metal (from ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, e ...
and
metalloid A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on which elements are ...
and has some nonmetallic properties: it is intermediate between a
hydrogen halide In chemistry, hydrogen halides (hydrohalic acids when in the aqueous phase) are diatomic, inorganic compounds that function as Arrhenius acids. The formula is HX where X is one of the halogens: fluorine, chlorine, bromine, iodine, or astatine. ...
like
hydrogen chloride The compound hydrogen chloride has the chemical formula and as such is a hydrogen halide. At room temperature, it is a colourless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hydrogen chlorid ...
(HCl) and a metal hydride like stannane ( SnH4). Livermorane should continue this trend: it should be a hydride rather than a livermoride, but still a covalent
molecular A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
compound. Spin-orbit interactions are expected to make the Lv–H bond longer than expected from
periodic trends Periodic trends are specific patterns that are present in the periodic table that illustrate different aspects of a certain element. They were discovered by the Russian chemist Dmitri Mendeleev in the year 1863. Major periodic trends include atom ...
alone, and make the H–Lv–H bond angle larger than expected: this is theorized to be because the unoccupied 8s orbitals are relatively low in energy and can hybridize with the valence 7p orbitals of livermorium. This phenomenon, dubbed "supervalent hybridization", has some analogues in non-relativistic regions in the periodic table; for example, molecular calcium difluoride has 4s and 3d involvement from the
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar ...
atom. The heavier livermorium di
halide In chemistry, a halide (rarely halogenide) is a binary chemical compound, of which one part is a halogen atom and the other part is an element or radical that is less electronegative (or more electropositive) than the halogen, to make a flu ...
s are predicted to be
linear Linearity is the property of a mathematical relationship ('' function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear ...
, but the lighter ones are predicted to be bent.


Experimental chemistry

Unambiguous determination of the chemical characteristics of livermorium has not yet been established. In 2011, experiments were conducted to create nihonium,
flerovium Flerovium is a superheavy chemical element with symbol Fl and atomic number 114. It is an extremely radioactive synthetic element. It is named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dub ...
, and moscovium isotopes in the reactions between calcium-48 projectiles and targets of americium-243 and
plutonium-244 Plutonium-244 (244Pu) is an isotope of plutonium that has a half-life of 80 million years. This is longer than any of the other isotopes of plutonium and longer than any other actinide isotope except for the three naturally abundant ones: ura ...
. The targets included
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
and
bismuth Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs ...
impurities and hence some isotopes of bismuth and
polonium Polonium is a chemical element with the symbol Po and atomic number 84. Polonium is a chalcogen. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic character ...
were generated in nucleon transfer reactions. This, while an unforeseen complication, could give information that would help in the future chemical investigation of the heavier homologs of bismuth and polonium, which are respectively moscovium and livermorium. The produced nuclides bismuth-213 and polonium-212m were transported as the hydrides 213BiH3 and 212mPoH2 at 850 °C through a quartz wool filter unit held with
tantalum Tantalum is a chemical element with the symbol Ta and atomic number 73. Previously known as ''tantalium'', it is named after Tantalus, a villain in Greek mythology. Tantalum is a very hard, ductile, lustrous, blue-gray transition metal that ...
, showing that these hydrides were surprisingly thermally stable, although their heavier congeners McH3 and LvH2 would be expected to be less thermally stable from simple extrapolation of
periodic trends Periodic trends are specific patterns that are present in the periodic table that illustrate different aspects of a certain element. They were discovered by the Russian chemist Dmitri Mendeleev in the year 1863. Major periodic trends include atom ...
in the p-block. Further calculations on the stability and electronic structure of BiH3, McH3, PoH2, and LvH2 are needed before chemical investigations take place. Moscovium and livermorium are expected to be volatile enough as pure elements for them to be chemically investigated in the near future, a property livermorium would then share with its lighter congener polonium, though the short half-lives of all presently known livermorium isotopes means that the element is still inaccessible to experimental chemistry.


Notes


References


Bibliography

* * * *


External links


Livermorium
at '' The Periodic Table of Videos'' (University of Nottingham)
''CERN Courier'' – Second postcard from the island of stability

Livermorium at WebElements.com
{{Authority control Chemical elements Chalcogens Synthetic elements Ernest Lawrence