List of spherical symmetry groups
   HOME

TheInfoList



OR:

Finite spherical symmetry groups are also called
point groups in three dimensions In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometrie ...
. There are five fundamental symmetry classes which have triangular fundamental domains: dihedral,
cyclic Cycle, cycles, or cyclic may refer to: Anthropology and social sciences * Cyclic history, a theory of history * Cyclical theory, a theory of American political history associated with Arthur Schlesinger, Sr. * Social cycle, various cycles in so ...
,
tetrahedral In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ...
,
octahedral In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet a ...
, and icosahedral symmetry. This article lists the groups by Schoenflies notation,
Coxeter notation In geometry, Coxeter notation (also Coxeter symbol) is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagra ...
,
orbifold notation In geometry, orbifold notation (or orbifold signature) is a system, invented by the mathematician William Thurston and promoted by John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The adva ...
, and order. John Conway uses a variation of the Schoenflies notation, based on the groups'
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quater ...
algebraic structure, labeled by one or two upper case letters, and whole number subscripts. The group order is defined as the subscript, unless the order is doubled for symbols with a plus or minus, "±", prefix, which implies a
central inversion In geometry, a point reflection (point inversion, central inversion, or inversion through a point) is a type of isometry of Euclidean space. An object that is invariant under a point reflection is said to possess point symmetry; if it is inv ...
.
Hermann–Mauguin notation In geometry, Hermann–Mauguin notation is used to represent the symmetry elements in point groups, plane groups and space groups. It is named after the German crystallographer Carl Hermann (who introduced it in 1928) and the French mineralogis ...
(International notation) is also given. The
crystallography Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics ( condensed matter physics). The wor ...
groups, 32 in total, are a subset with element orders 2, 3, 4 and 6.Sands, 1993


Involutional symmetry

There are four
involution Involution may refer to: * Involute, a construction in the differential geometry of curves * '' Agricultural Involution: The Processes of Ecological Change in Indonesia'', a 1963 study of intensification of production through increased labour inpu ...
al groups: no symmetry (C1),
reflection symmetry In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2D the ...
(Cs), 2-fold rotational symmetry (C2), and central
point symmetry In geometry, a point reflection (point inversion, central inversion, or inversion through a point) is a type of isometry of Euclidean space. An object that is invariant under a point reflection is said to possess point symmetry; if it is inv ...
(Ci).


Cyclic symmetry

There are four infinite
cyclic symmetry In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binar ...
families, with ''n'' = 2 or higher. (''n'' may be 1 as a special case as ''no symmetry'')


Dihedral symmetry

There are three infinite dihedral symmetry families, with ''n'' = 2 or higher (''n'' may be 1 as a special case).


Polyhedral symmetry

There are three types of
polyhedral symmetry In geometry, the polyhedral group is any of the symmetry groups of the Platonic solids. Groups There are three polyhedral groups: *The tetrahedral group of order 12, rotational symmetry group of the regular tetrahedron. It is isomorphic to ''A ...
:
tetrahedral symmetry 150px, A regular tetrahedron, an example of a solid with full tetrahedral symmetry A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection ...
,
octahedral symmetry A regular octahedron has 24 rotational (or orientation-preserving) symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedr ...
, and
icosahedral symmetry In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual polyhedr ...
, named after the triangle-faced regular polyhedra with these symmetries.


See also

*
Crystallographic point group In crystallography, a crystallographic point group is a set of symmetry operations, corresponding to one of the point groups in three dimensions, such that each operation (perhaps followed by a translation) would leave the structure of a crystal u ...
* Triangle group * List of planar symmetry groups *
Point groups in two dimensions In geometry, a two-dimensional point group or rosette group is a group of geometric symmetries (isometries) that keep at least one point fixed in a plane. Every such group is a subgroup of the orthogonal group O(2), including O(2) itself. Its ele ...


References


Further reading

* Peter R. Cromwell, ''Polyhedra'' (1997), Appendix I * * ''On Quaternions and Octonions'', 2003, John Horton Conway and Derek A. Smith * ''The Symmetries of Things'' 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, * Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', ath. Zeit. 46 (1940) 380–407, MR 2,10** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', ath. Zeit. 188 (1985) 559–591** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3–45* N.W. Johnson: ''Geometries and Transformations'', (2018) Chapter 11: ''Finite symmetry groups'', Table 11.4 Finite Groups of Isometries in 3-space


External links


Finite spherical symmetry groups
* *

by David I. McCooey {{DEFAULTSORT:Finite spherical symmetry groups Polyhedra Symmetry Group theory Spherical symmetry groups, Finite