Light dark matter
   HOME

TheInfoList



OR:

Light dark matter, in
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
and
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
, are
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ...
weakly interacting massive particles Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter. There exists no formal definition of a WIMP, but broadly, a WIMP is a new elementary particle which interacts via gra ...
(WIMPS) candidates with masses less than 1 GeV. These particles are heavier than
warm dark matter Warm dark matter (WDM) is a hypothesized form of dark matter that has properties intermediate between those of hot dark matter and cold dark matter, causing structure formation to occur bottom-up from above their free-streaming scale, and top-down ...
and
hot dark matter Hot dark matter (HDM) is a theoretical form of dark matter which consists of particles that travel with ultrarelativistic velocities. Dark matter is a form of matter that neither emits nor absorbs light. Within physics, this behavior is character ...
, but are lighter than the traditional forms of
cold dark matter In cosmology and physics, cold dark matter (CDM) is a hypothetical type of dark matter. According to the current standard model of cosmology, Lambda-CDM model, approximately 27% of the universe is dark matter and 68% is dark energy, with only a sm ...
, such as
Massive Compact Halo Objects A massive astrophysical compact halo object (MACHO) is a kind of astronomical body that might explain the apparent presence of dark matter in galaxy halos. A MACHO is a body that emits little or no radiation and drifts through interstellar space ...
(MACHOs). The
Lee Lee may refer to: Name Given name * Lee (given name), a given name in English Surname * Chinese surnames romanized as Li or Lee: ** Li (surname 李) or Lee (Hanzi ), a common Chinese surname ** Li (surname 利) or Lee (Hanzi ), a Chinese ...
- Weinberg bound limits the mass of the favored dark matter candidate, WIMPs, that interact via the weak interaction to \approx 2 GeV. This bound arises as follows. The lower the mass of WIMPs is, the lower the annihilation cross section, which is of the order \approx m^2/M^4, where ''m'' is the WIMP mass and ''M'' the mass of the Z-boson. This means that low mass WIMPs, which would be abundantly produced in the early universe, freeze out (i.e. stop interacting) much earlier and thus at a higher temperature, than higher mass WIMPs. This leads to a higher relic WIMP density. If the mass is lower than \sim 2 GeV the WIMP relic density would overclose the universe. Some of the few loopholes allowing one to avoid the Lee-Weinberg bound without introducing new forces below the electroweak scale have been ruled out by accelerator experiments (i.e.
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gen ...
,
Tevatron The Tevatron was a circular particle accelerator (active until 2011) in the United States, at the Fermi National Accelerator Laboratory (also known as ''Fermilab''), east of Batavia, Illinois, and is the second highest energy particle collider ...
), and in decays of
B meson In particle physics, B mesons are mesons composed of a bottom antiquark and either an up (), down (), strange () or charm quark (). The combination of a bottom antiquark and a top quark is not thought to be possible because of the top quark' ...
s. A viable way of building light dark matter models is thus by postulating new light bosons. This increases the annihilation cross section and reduces the coupling of dark matter particles to the Standard Model making them consistent with accelerator experiments. Current methods to search for light dark matter particles include direct detection through electron recoil.


Motivation

In recent years, light dark matter has become popular due in part to the many benefits of the theory. Sub-GeV dark matter has been used to explain the positron excess in the
Galactic Center The Galactic Center or Galactic Centre is the rotational center, the barycenter, of the Milky Way galaxy. Its central massive object is a supermassive black hole of about 4 million solar masses, which is called Sagittarius A*, a compact ra ...
observed by
INTEGRAL In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
, excess
gamma rays A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
from the Galactic Center and extragalactic sources. It has also been suggested that light dark matter may explain a small discrepancy in the measured value of the fine structure constant in different experiments. Furthermore, the lack of dark matter signals in higher energy ranges in direct detection experiments incentivizes sub-GeV searches.


Theoretical Models for Light Dark Matter

Due to the constraints placed on the mass of WIMPs in the popular freeze out model which predict WIMP masses greater than 2 GeV, the freeze out model must be altered to allow for lower mass dark matter particles.


Scalar Dark Matter

The Lee-Weinberg limit, which restricts the mass of dark matter particles to >2 GeV may not apply in two special cases where dark matter is a scalar particle. The first case requires that the scalar dark matter particle is coupled with a massive fermion. This model rules out dark matter particles less than 100 MeV because observations of gamma ray production do not align with theoretical predictions for particles in this mass range. This discrepancy may be resolved by requiring an asymmetry between the dark matter particles and antiparticles, as well as adding new particles. The second case predicts that the scalar dark matter particle is coupled with a new gauge boson. The production of gamma rays due to annihilation in this case is predicted to be very low.


Freeze In Model

The thermal freeze in model proposes that dark matter particles were very weakly interacting shortly after the Big Bang such that they were essentially decoupled from the plasma. Furthermore, their initial abundance was small. Dark matter production occurs predominantly when the temperature of the plasma falls under the mass of the dark matter particle itself. This is in contrast to the thermal freeze out theory, in which the initial abundance of dark matter was large, and differentiation into lighter particles decreases and eventually stops as the temperature of the plasma decreases. The freeze in model allows for dark matter particles well under the 2 GeV mass limit to exist.


Asymmetric Dark Matter

Observations show that the density of dark matter is about 5 times the density of baryonic matter. Asymmetric dark matter theories attempt to explain this relationship by suggesting that the ratio between the number densities of particles and antiparticles is the same in baryonic matter as it is in dark matter. This further implies that the mass of dark matter is close to 5 times the mass of baryonic matter, placing the mass of dark matter in the few GeV range.


Experiments

In general, the methods for detecting dark matter which apply to all heavier dark matter candidates also apply to light dark matter. These methods include direct detection and indirect detection. Dark matter particles with masses lighter than 1 GeV can be directly detected by searching for electron recoils. The greatest difficulty in using this method is creating a detector with a low enough threshold energy for detection while also minimizing background signals. Electron beam dump experiments can also be used to search for light dark matter particles.


XENON10

XENON10 is a liquid xenon detector that searches for and places limits on the mass of dark matter by directly detecting electron recoil. This experiment placed the first sub GeV limits on the mass of dark matter using direct detection in 2012.


SENSEI

SENSEI is a silicon detector capable of measuring the electronic recoil of a dark matter particle between 500 keV and 4 MeV using CCD technology. The experiment has been working to place further rule out possible mass ranges of dark matter below 1 GeV, with its most recent results being published in October 2020.


See also

*
Axion An axion () is a hypothetical elementary particle postulated by the Peccei–Quinn theory in 1977 to resolve the strong CP problem in quantum chromodynamics (QCD). If axions exist and have low mass within a specific range, they are of interest ...
* Axion Dark Matter Experiment *
Dark matter halo According to modern models of physical cosmology, a dark matter halo is a basic unit of cosmological structure. It is a hypothetical region that has decoupled from cosmic expansion and contains gravitationally bound matter. A single dark mat ...
*
Minimal Supersymmetric Standard Model The Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the inimumnumber of new particle states and new interactions con ...
*
Neutralino In supersymmetry, the neutralino is a hypothetical particle. In the Minimal Supersymmetric Standard Model (MSSM), a popular model of realization of supersymmetry at a low energy, there are four neutralinos that are fermions and are electrically ...
*
Scalar field dark matter In astrophysics and cosmology scalar field dark matter is a classical, minimally coupled, scalar field postulated to account for the inferred dark matter. Background The universe may be accelerating, fueled perhaps by a cosmological constant or ...
*
Weakly interacting massive particles Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter. There exists no formal definition of a WIMP, but broadly, a WIMP is a new elementary particle which interacts via gra ...
* Weakly interacting slender particles


References


Further reading

* {{DEFAULTSORT:Light Dark Matter Physical cosmology Astroparticle physics Dark matter Physics beyond the Standard Model