Lead-214
   HOME

TheInfoList



OR:

Lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
(82Pb) has four stable
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
s: 204Pb, 206Pb, 207Pb, 208Pb. Lead-204 is entirely a primordial nuclide and is not a
radiogenic nuclide A radiogenic nuclide is a nuclide that is produced by a process of radioactive decay. It may itself be radioactive (a radionuclide) or stable (a stable nuclide). Radiogenic nuclides (more commonly referred to as radiogenic isotopes) form some of ...
. The three isotopes lead-206, lead-207, and lead-208 represent the ends of three
decay chain In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay dire ...
s: the
uranium series In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay direct ...
(or radium series), the
actinium series In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay directly ...
, and the
thorium series In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay direct ...
, respectively; a fourth decay chain, the
neptunium series In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay directly ...
, terminates with the
thallium Thallium is a chemical element with the symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes an ...
isotope 205Tl. The three series terminating in lead represent the decay chain products of long-lived primordial 238U, 235U, and 232Th, respectively. However, each of them also occurs, to some extent, as primordial isotopes that were made in supernovae, rather than radiogenically as daughter products. The fixed ratio of lead-204 to the primordial amounts of the other lead isotopes may be used as the baseline to estimate the extra amounts of radiogenic lead present in rocks as a result of decay from uranium and thorium. (See
lead–lead dating Lead–lead dating is a method for dating geological samples, normally based on 'whole-rock' samples of material such as granite. For most dating requirements it has been superseded by uranium–lead dating (U–Pb dating), but in certain speciali ...
and
uranium–lead dating Uranium–lead dating, abbreviated U–Pb dating, is one of the oldest and most refined of the radiometric dating schemes. It can be used to date rocks that formed and crystallised from about 1 million years to over 4.5 billion years ago with routi ...
). The longest-lived
radioisotopes A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
are 205Pb with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of 17.3 million years and 202Pb with a half-life of 52,500 years. A shorter-lived naturally occurring radioisotope, 210Pb with a half-life of 22.2 years, is useful for studying the
sedimentation Sedimentation is the deposition of sediments. It takes place when particles in suspension settle out of the fluid in which they are entrained and come to rest against a barrier. This is due to their motion through the fluid in response to the ...
chronology of environmental samples on time scales shorter than 100 years. The relative abundances of the four stable isotopes are approximately 1.5%, 24%, 22%, and 52.5%, combining to give a standard atomic weight (abundance-weighted average of the stable isotopes) of 207.2(1). Lead is the element with the heaviest stable isotope, 208Pb. (The more massive 209Bi, long considered to be stable, actually has a half-life of 2.01×1019 years.) 208Pb is also a
doubly magic In nuclear physics, a magic number is a number of nucleons (either protons or neutrons, separately) such that they are arranged into complete shells within the atomic nucleus. As a result, atomic nuclei with a 'magic' number of protons or neutron ...
isotope, as it has 82 protons and 126
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s. It is the heaviest doubly magic nuclide known. A total of 43 lead isotopes are now known, including very unstable synthetic species. The four primordial isotopes of lead are all
observationally stable Stable nuclides are nuclides that are not radioactive and so (unlike radionuclides) do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes. Th ...
, meaning that they are predicted to undergo radioactive decay but no decay has been observed yet. These four isotopes are predicted to undergo
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an at ...
and become
isotopes of mercury There are seven stable isotopes of mercury (80Hg) with 202Hg being the most abundant (29.86%). The longest-lived radioisotopes are 194Hg with a half-life of 444 years, and 203Hg with a half-life of 46.612 days. Most of the remaining 40 radioisoto ...
which are themselves radioactive or observationally stable. In its fully ionized state, the isotope 205Pb also becomes stable.


List of isotopes

, - , 178Pb , , style="text-align:right" , 82 , style="text-align:right" , 96 , 178.003830(26) , 0.23(15) ms , α , 174Hg , 0+ , , , - , 179Pb , , style="text-align:right" , 82 , style="text-align:right" , 97 , 179.00215(21)# , 3.9(1.1) ms , α , 175Hg , (9/2−) , , , - , 180Pb , , style="text-align:right" , 82 , style="text-align:right" , 98 , 179.997918(22) , 4.5(11) ms , α , 176Hg , 0+ , , , - , rowspan=2, 181Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 99 , rowspan=2, 180.99662(10) , rowspan=2, 45(20) ms , α (98%) , 177Hg , rowspan=2, (9/2−) , rowspan=2, , rowspan=2, , - , β+ (2%) , 181Tl , - , rowspan=2, 182Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 100 , rowspan=2, 181.992672(15) , rowspan=2, 60(40) ms
5(+40−35) ms, α (98%) , 178Hg , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+ (2%) , 182Tl , - , rowspan=2, 183Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 101 , rowspan=2, 182.99187(3) , rowspan=2, 535(30) ms , α (94%) , 179Hg , rowspan=2, (3/2−) , rowspan=2, , rowspan=2, , - , β+ (6%) , 183Tl , - , rowspan=2 style="text-indent:1em" , 183mPb , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 94(8) keV , rowspan=2, 415(20) ms , α , 179Hg , rowspan=2, (13/2+) , rowspan=2, , rowspan=2, , - , β+ (rare) , 183Tl , - , rowspan=2, 184Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 102 , rowspan=2, 183.988142(15) , rowspan=2, 490(25) ms , α , 180Hg , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+ (rare) , 184Tl , - , rowspan=2, 185Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 103 , rowspan=2, 184.987610(17) , rowspan=2, 6.3(4) s , α , 181Hg , rowspan=2, 3/2− , rowspan=2, , rowspan=2, , - , β+ (rare) , 185Tl , - , rowspan=2 style="text-indent:1em" , 185mPb , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 60(40)# keV , rowspan=2, 4.07(15) s , α , 181Hg , rowspan=2, 13/2+ , rowspan=2, , rowspan=2, , - , β+ (rare) , 185Tl , - , rowspan=2, 186Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 104 , rowspan=2, 185.984239(12) , rowspan=2, 4.82(3) s , α (56%) , 182Hg , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+ (44%) , 186Tl , - , rowspan=2, 187Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 105 , rowspan=2, 186.983918(9) , rowspan=2, 15.2(3) s , β+ , 187Tl , rowspan=2, (3/2−) , rowspan=2, , rowspan=2, , - , α , 183Hg , - , rowspan=2 style="text-indent:1em" , 187mPb , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 11(11) keV , rowspan=2, 18.3(3) s , β+ (98%) , 187Tl , rowspan=2, (13/2+) , rowspan=2, , rowspan=2, , - , α (2%) , 183Hg , - , rowspan=2, 188Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 106 , rowspan=2, 187.980874(11) , rowspan=2, 25.5(1) s , β+ (91.5%) , 188Tl , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (8.5%) , 184Hg , - , style="text-indent:1em" , 188m1Pb , , colspan="3" style="text-indent:2em" , 2578.2(7) keV , 830(210) ns , , , (8−) , , , - , style="text-indent:1em" , 188m2Pb , , colspan="3" style="text-indent:2em" , 2800(50) keV , 797(21) ns , , , , , , - , 189Pb , , style="text-align:right" , 82 , style="text-align:right" , 107 , 188.98081(4) , 51(3) s , β+ , 189Tl , (3/2−) , , , - , rowspan=2 style="text-indent:1em" , 189m1Pb , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 40(30)# keV , rowspan=2, 50.5(2.1) s , β+ (99.6%) , 189Tl , rowspan=2, 13/2+ , rowspan=2, , rowspan=2, , - , α (.4%) , 185Hg , - , style="text-indent:1em" , 189m2Pb , , colspan="3" style="text-indent:2em" , 2475(30)# keV , 26(5) μs , , , (10)+ , , , - , rowspan=2, 190Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 108 , rowspan=2, 189.978082(13) , rowspan=2, 71(1) s , β+ (99.1%) , 190Tl , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (.9%) , 186Hg , - , style="text-indent:1em" , 190m1Pb , , colspan="3" style="text-indent:2em" , 2614.8(8) keV , 150 ns , , , (10)+ , , , - , style="text-indent:1em" , 190m2Pb , , colspan="3" style="text-indent:2em" , 2618(20) keV , 25 μs , , , (12+) , , , - , style="text-indent:1em" , 190m3Pb , , colspan="3" style="text-indent:2em" , 2658.2(8) keV , 7.2(6) μs , , , (11)− , , , - , rowspan=2, 191Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 109 , rowspan=2, 190.97827(4) , rowspan=2, 1.33(8) min , β+ (99.987%) , 191Tl , rowspan=2, (3/2−) , rowspan=2, , rowspan=2, , - , α (.013%) , 187Hg , - , rowspan=2 style="text-indent:1em" , 191mPb , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 20(50) keV , rowspan=2, 2.18(8) min , β+ (99.98%) , 191Tl , rowspan=2, 13/2(+) , rowspan=2, , rowspan=2, , - , α (.02%) , 187Hg , - , rowspan=2, 192Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 110 , rowspan=2, 191.975785(14) , rowspan=2, 3.5(1) min , β+ (99.99%) , 192Tl , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (.0061%) , 188Hg , - , style="text-indent:1em" , 192m1Pb , , colspan="3" style="text-indent:2em" , 2581.1(1) keV , 164(7) ns , , , (10)+ , , , - , style="text-indent:1em" , 192m2Pb , , colspan="3" style="text-indent:2em" , 2625.1(11) keV , 1.1(5) μs , , , (12+) , , , - , style="text-indent:1em" , 192m3Pb , , colspan="3" style="text-indent:2em" , 2743.5(4) keV , 756(21) ns , , , (11)− , , , - , 193Pb , , style="text-align:right" , 82 , style="text-align:right" , 111 , 192.97617(5) , 5# min , β+ , 193Tl , (3/2−) , , , - , style="text-indent:1em" , 193m1Pb , , colspan="3" style="text-indent:2em" , 130(80)# keV , 5.8(2) min , β+ , 193Tl , 13/2(+) , , , - , style="text-indent:1em" , 193m2Pb , , colspan="3" style="text-indent:2em" , 2612.5(5)+X keV , 135(+25−15) ns , , , (33/2+) , , , - , rowspan=2, 194Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 112 , rowspan=2, 193.974012(19) , rowspan=2, 12.0(5) min , β+ (100%) , 194Tl , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (7.3×10−6%) , 190Hg , - , 195Pb , , style="text-align:right" , 82 , style="text-align:right" , 113 , 194.974542(25) , ~15 min , β+ , 195Tl , 3/2#- , , , - , style="text-indent:1em" , 195m1Pb , , colspan="3" style="text-indent:2em" , 202.9(7) keV , 15.0(12) min , β+ , 195Tl , 13/2+ , , , - , style="text-indent:1em" , 195m2Pb , , colspan="3" style="text-indent:2em" , 1759.0(7) keV , 10.0(7) μs , , , 21/2− , , , - , rowspan=2, 196Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 114 , rowspan=2, 195.972774(15) , rowspan=2, 37(3) min , β+ , 196Tl , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (3×10−5%) , 192Hg , - , style="text-indent:1em" , 196m1Pb , , colspan="3" style="text-indent:2em" , 1049.20(9) keV , <100 ns , , , 2+ , , , - , style="text-indent:1em" , 196m2Pb , , colspan="3" style="text-indent:2em" , 1738.27(12) keV , <1 μs , , , 4+ , , , - , style="text-indent:1em" , 196m3Pb , , colspan="3" style="text-indent:2em" , 1797.51(14) keV , 140(14) ns , , , 5− , , , - , style="text-indent:1em" , 196m4Pb , , colspan="3" style="text-indent:2em" , 2693.5(5) keV , 270(4) ns , , , (12+) , , , - , 197Pb , , style="text-align:right" , 82 , style="text-align:right" , 115 , 196.973431(6) , 8.1(17) min , β+ , 197Tl , 3/2− , , , - , rowspan=3 style="text-indent:1em" , 197m1Pb , rowspan=3, , rowspan=3 colspan="3" style="text-indent:2em" , 319.31(11) keV , rowspan=3, 42.9(9) min , β+ (81%) , 197Tl , rowspan=3, 13/2+ , rowspan=3, , rowspan=3, , - , IT (19%) , 197Pb , - , α (3×10−4%) , 193Hg , - , style="text-indent:1em" , 197m2Pb , , colspan="3" style="text-indent:2em" , 1914.10(25) keV , 1.15(20) μs , , , 21/2− , , , - , 198Pb , , style="text-align:right" , 82 , style="text-align:right" , 116 , 197.972034(16) , 2.4(1) h , β+ , 198Tl , 0+ , , , - , style="text-indent:1em" , 198m1Pb , , colspan="3" style="text-indent:2em" , 2141.4(4) keV , 4.19(10) μs , , , (7)− , , , - , style="text-indent:1em" , 198m2Pb , , colspan="3" style="text-indent:2em" , 2231.4(5) keV , 137(10) ns , , , (9)− , , , - , style="text-indent:1em" , 198m3Pb , , colspan="3" style="text-indent:2em" , 2820.5(7) keV , 212(4) ns , , , (12)+ , , , - , 199Pb , , style="text-align:right" , 82 , style="text-align:right" , 117 , 198.972917(28) , 90(10) min , β+ , 199Tl , 3/2− , , , - , rowspan=2 style="text-indent:1em" , 199m1Pb , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 429.5(27) keV , rowspan=2, 12.2(3) min , IT (93%) , 199Pb , rowspan=2, (13/2+) , rowspan=2, , rowspan=2, , - , β+ (7%) , 199Tl , - , style="text-indent:1em" , 199m2Pb , , colspan="3" style="text-indent:2em" , 2563.8(27) keV , 10.1(2) μs , , , (29/2−) , , , - , 200Pb , , style="text-align:right" , 82 , style="text-align:right" , 118 , 199.971827(12) , 21.5(4) h , β+ , 200Tl , 0+ , , , - , rowspan=2, 201Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 119 , rowspan=2, 200.972885(24) , rowspan=2, 9.33(3) h , EC (99%) , rowspan=2, 201Tl , rowspan=2, 5/2− , rowspan=2, , rowspan=2, , - , β+ (1%) , - , style="text-indent:1em" , 201m1Pb , , colspan="3" style="text-indent:2em" , 629.14(17) keV , 61(2) s , , , 13/2+ , , , - , style="text-indent:1em" , 201m2Pb , , colspan="3" style="text-indent:2em" , 2718.5+X keV , 508(5) ns , , , (29/2−) , , , - , rowspan=2, 202Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 120 , rowspan=2, 201.972159(9) , rowspan=2, 5.25(28)×104 y , EC (99%) , 202Tl , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (1%) , 198Hg , - , rowspan=2 style="text-indent:1em" , 202m1Pb , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 2169.83(7) keV , rowspan=2, 3.53(1) h , IT (90.5%) , 202Pb , rowspan=2, 9− , rowspan=2, , rowspan=2, , - , EC (9.5%) , 202Tl , - , style="text-indent:1em" , 202m2Pb , , colspan="3" style="text-indent:2em" , 4142.9(11) keV , 110(5) ns , , , (16+) , , , - , style="text-indent:1em" , 202m3Pb , , colspan="3" style="text-indent:2em" , 5345.9(13) keV , 107(5) ns , , , (19−) , , , - , 203Pb , , style="text-align:right" , 82 , style="text-align:right" , 121 , 202.973391(7) , 51.873(9) h , EC , 203Tl , 5/2− , , , - , style="text-indent:1em" , 203m1Pb , , colspan="3" style="text-indent:2em" , 825.20(9) keV , 6.21(8) s , IT , 203Pb , 13/2+ , , , - , style="text-indent:1em" , 203m2Pb , , colspan="3" style="text-indent:2em" , 2949.47(22) keV , 480(7) ms , , , 29/2− , , , - , style="text-indent:1em" , 203m3Pb , , colspan="3" style="text-indent:2em" , 2923.4+X keV , 122(4) ns , , , (25/2−) , , , - , 204PbUsed in
lead–lead dating Lead–lead dating is a method for dating geological samples, normally based on 'whole-rock' samples of material such as granite. For most dating requirements it has been superseded by uranium–lead dating (U–Pb dating), but in certain speciali ...
, , style="text-align:right" , 82 , style="text-align:right" , 122 , 203.9730436(13) , colspan="3" style="text-align:center;",
Observationally Stable Stable nuclides are nuclides that are not radioactive and so (unlike radionuclides) do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes. Th ...
Believed to undergo α decay to 200Hg with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
over 1.4×1020 years
, 0+ , 0.014(1) , 0.0104–0.0165 , - , style="text-indent:1em" , 204m1Pb , , colspan="3" style="text-indent:2em" , 1274.00(4) keV , 265(10) ns , , , 4+ , , , - , style="text-indent:1em" , 204m2Pb , , colspan="3" style="text-indent:2em" , 2185.79(5) keV , 67.2(3) min , , , 9− , , , - , style="text-indent:1em" , 204m3Pb , , colspan="3" style="text-indent:2em" , 2264.33(4) keV , 0.45(+10−3) μs , , , 7− , , , - , 205Pb , , style="text-align:right" , 82 , style="text-align:right" , 123 , 204.9744818(13) , 1.73(7)×107 y , EC , 205Tl , 5/2− , , , - , style="text-indent:1em" , 205m1Pb , , colspan="3" style="text-indent:2em" , 2.329(7) keV , 24.2(4) μs , , , 1/2− , , , - , style="text-indent:1em" , 205m2Pb , , colspan="3" style="text-indent:2em" , 1013.839(13) keV , 5.55(2) ms , , , 13/2+ , , , - , style="text-indent:1em" , 205m3Pb , , colspan="3" style="text-indent:2em" , 3195.7(5) keV , 217(5) ns , , , 25/2− , , , - , 206PbFinal decay product of 4n+2
decay chain In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay dire ...
(the Radium or Uranium series)
, Radium G , style="text-align:right" , 82 , style="text-align:right" , 124 , 205.9744653(13) , colspan="3" style="text-align:center;", Observationally StableExperimental lower bound is \tau_ > 2.5\times10^ years; the theoretical lifetime for α decay to 202Hg is > 10^ years. , 0+ , 0.241(1) , 0.2084–0.2748 , - , style="text-indent:1em" , 206m1Pb , , colspan="3" style="text-indent:2em" , 2200.14(4) keV , 125(2) μs , , , 7− , , , - , style="text-indent:1em" , 206m2Pb , , colspan="3" style="text-indent:2em" , 4027.3(7) keV , 202(3) ns , , , 12+ , , , - , 207PbFinal decay product of 4n+3 decay chain (the
Actinium series In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay directly ...
)
, Actinium D , style="text-align:right" , 82 , style="text-align:right" , 125 , 206.9758969(13) , colspan="3" style="text-align:center;", Observationally StableExperimental lower bound is \tau_ > 1.9\times10^ years; the theoretical lifetime for α decay to 203Hg is > 10^ years. , 1/2− , 0.221(1) , 0.1762–0.2365 , - , style="text-indent:1em" , 207mPb , , colspan="3" style="text-indent:2em" , 1633.368(5) keV , 806(6) ms , IT , 207Pb , 13/2+ , , , - , 208PbFinal decay product of 4n decay chain (the
Thorium series In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay direct ...
)
, Thorium D , style="text-align:right" , 82 , style="text-align:right" , 126 , 207.9766521(13) , colspan="3" style="text-align:center;", Observationally StableExperimental lower bound is \tau_ > 2.6\times10^ years; the theoretical lifetime for α decay to 204Hg is > 10^ years. , 0+ , 0.524(1) , 0.5128–0.5621 , - , style="text-indent:1em" , 208mPb , , colspan="3" style="text-indent:2em" , 4895(2) keV , 500(10) ns , , , 10+ , , , - , 209Pb , , style="text-align:right" , 82 , style="text-align:right" , 127 , 208.9810901(19) , 3.253(14) h , β , ''209Bi'' , 9/2+ , TraceIntermediate decay product of 237Np , , - , rowspan=2, 210Pb , rowspan=2, Radium D
Radiolead
Radio-lead , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 128 , rowspan=2, 209.9841885(16) , rowspan=2, 22.20(22) y , β (100%) , 210Bi , rowspan=2, 0+ , rowspan=2, TraceIntermediate decay product of 238U , rowspan=2, , - , α (1.9×10−6%) , 206Hg , - , style="text-indent:1em" , 210mPb , , colspan="3" style="text-indent:2em" , 1278(5) keV , 201(17) ns , , , 8+ , , , - , 211Pb , Actinium B , style="text-align:right" , 82 , style="text-align:right" , 129 , 210.9887370(29) , 36.1(2) min , β , 211Bi , 9/2+ , TraceIntermediate decay product of 235U , , - , 212Pb , Thorium B , style="text-align:right" , 82 , style="text-align:right" , 130 , 211.9918975(24) , 10.64(1) h , β , 212Bi , 0+ , TraceIntermediate decay product of 232Th , , - , style="text-indent:1em" , 212mPb , , colspan="3" style="text-indent:2em" , 1335(10) keV , 6.0(0.8) μs , IT , 212Pb , (8+) , , , - , 213Pb , , style="text-align:right" , 82 , style="text-align:right" , 131 , 212.996581(8) , 10.2(3) min , β , 213Bi , (9/2+) , , , - , 214Pb , Radium B , style="text-align:right" , 82 , style="text-align:right" , 132 , 213.9998054(26) , 26.8(9) min , β , 214Bi , 0+ , Trace , , - , style="text-indent:1em" , 214mPb , , colspan="3" style="text-indent:2em" , 1420(20) keV , 6.2(0.3) μs , IT , 212Pb , 8+# , , , - , 215Pb , , style="text-align:right" , 82 , style="text-align:right" , 133 , 215.004660(60) , 2.34(0.19) min , β , 215Bi , 9/2+# , , , - , 216Pb , , style="text-align:right" , 82 , style="text-align:right" , 134 , 216.008030(210)# , 1.65(0.2) min , β , 216Bi , 0+ , , , - , style="text-indent:1em" , 216mPb , , colspan="3" style="text-indent:2em" , 1514(20) keV , 400(40) ns , IT , 216Pb , 8+# , , , - , 217Pb , , style="text-align:right" , 82 , style="text-align:right" , 135 , 217.013140(320)# , 20(5) s , β , 217Bi , 9/2+# , , , - , 218Pb , , style="text-align:right" , 82 , style="text-align:right" , 136 , 218.016590(320)# , 15(7) s , β , 218Bi , 0+ , ,


Lead-206

206Pb is the final step in the decay chain of 238U, the "radium series" or "uranium series". In a closed system, over time, a given mass of 238U will decay in a sequence of steps culminating in 206Pb. The production of intermediate products eventually reaches an equilibrium (though this takes a long time, as the half-life of 234U is 245,500 years). Once this stabilized system is reached, the ratio of 238U to 206Pb will steadily decrease, while the ratios of the other intermediate products to each other remain constant. Like most radioisotopes found in the radium series, 206Pb was initially named as a variation of radium, specifically radium G. It is the decay product of both 210Po (historically called radium F) by
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an at ...
, and the much rarer 206Tl (radium EII) by
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
. Lead-206 has been proposed for use in fast breeder nuclear fission reactor coolant over the use of natural lead mixture (which also includes other stable lead isotopes) as a mechanism to improve
neutron economy Neutron economy is defined as the ratio of an adjoint weighted average of the excess neutron production divided by an adjoint weighted average of the fission production. The distribution of neutron energies in a nuclear reactor differs from the f ...
and greatly suppress unwanted production of highly radioactive byproducts.


Lead-204, -207, and -208

204Pb is entirely primordial, and is thus useful for estimating the fraction of the other lead isotopes in a given sample that are also primordial, since the relative fractions of the various primordial lead isotopes is constant everywhere. Any excess lead-206, -207, and -208 is thus assumed to be
radiogenic A radiogenic nuclide is a nuclide that is produced by a process of radioactive decay. It may itself be radioactive (a radionuclide) or stable (a stable nuclide). Radiogenic nuclides (more commonly referred to as radiogenic isotopes) form some ...
in origin, allowing various uranium and thorium dating schemes to be used to estimate the age of rocks (time since their formation) based on the relative abundance of lead-204 to other isotopes. 207Pb is the end of the
actinium series In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay directly ...
from 235U. 208Pb is the end of the
thorium series In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay direct ...
from 232Th. While it only makes up approximately half of the composition of lead in most places on Earth, it can be found naturally enriched up to around 90% in thorium ores. 208Pb is the heaviest known stable nuclide and also the heaviest known
doubly magic In nuclear physics, a magic number is a number of nucleons (either protons or neutrons, separately) such that they are arranged into complete shells within the atomic nucleus. As a result, atomic nuclei with a 'magic' number of protons or neutron ...
nucleus, as ''Z'' = 82 and ''N'' = 126 correspond to closed nuclear shells. As a consequence of this particularly stable configuration, its neutron capture
cross section Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture & engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **Abs ...
is very low (even lower than that of
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
in the thermal spectrum), making it of interest for
lead-cooled fast reactor The lead-cooled fast reactor is a nuclear reactor design that features a fast neutron spectrum and molten lead or lead-bismuth eutectic coolant. Molten lead or lead-bismuth eutectic can be used as the primary coolant because especially lead, and ...
s.


Lead-212

212Pb-containing
radiopharmaceuticals Radiopharmaceuticals, or medicinal radiocompounds, are a group of pharmaceutical drugs containing radioactive isotopes. Radiopharmaceuticals can be used as diagnostic and therapeutic agents. Radiopharmaceuticals emit radiation themselves, which is ...
have been trialed as therapeutic agents for the experimental cancer treatment
targeted alpha-particle therapy Targeted alpha-particle therapy (or TAT) is an in-development method of targeted radionuclide therapy of various cancers. It employs radioactive substances which undergo alpha decay to treat diseased tissue at close proximity. It has the potential t ...
.


References

Isotope masses from: * Isotopic compositions and standard atomic masses from: * * Half-life, spin, and isomer data selected from the following sources. * * * {{Authority control Lead
Lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...