The Info List - Lactobacillus

--- Advertisement ---

is a genus of Gram-positive, facultative anaerobic or microaerophilic, rod-shaped, non-spore-forming bacteria.[1] They are a major part of the lactic acid bacteria group (i.e. they convert sugars to lactic acid). In humans, they constitute a significant component of the microbiota at a number of body sites, such as the digestive system, urinary system, and genital system. In women of European ancestry, Lactobacillus
species are normally a major part of the vaginal microbiota.[2][3][4] Lactobacillus
forms biofilms in the vaginal and gut microbiota, allowing them to persist during harsh environmental conditions and maintain ample populations.[5] Lactobacillus
exhibits a mutualistic relationship with the human body as it protects the host against potential invasions by pathogens, and in turn, the host provides a source of nutrients.[6] Lactobacillus
is the most common probiotic found in food such as yogurt, and it is diverse in its application to maintain human well-being as it can help treat diarrhea, vaginal infections and skin disorders such as eczema.[7]


1 Metabolism 2 Genome 3 Taxonomy 4 Human health

4.1 Vaginal tract 4.2 Interactions with other pathogens 4.3 Probiotics 4.4 Oral health

5 Food production 6 See also 7 References 8 External links


This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2015) (Learn how and when to remove this template message)

Many lactobacilli operate using homofermentative metabolism (they produce only lactic acid from sugars), and some species use heterofermentative metabolism (they can produce either alcohol or lactic acid from sugars).[8] They are aerotolerant despite the complete absence of a respiratory chain.[9][10] This aerotolerance is manganese-dependent and has been explored (and explained) in Lactobacillus
plantarum.[9] Many species of this genus do not require iron for growth and have an extremely high hydrogen peroxide tolerance.[citation needed]

metabolism by human gastrointestinal microbiota (v · t · e)

Tryptophan Clostridium sporogenes Lacto- bacilli Tryptophanase- expressing bacteria IPA I3A Indole Liver Brain IPA I3A Indole Indoxyl sulfate AST-120 AhR Intestinal immune cells Intestinal epithelium PXR Mucosal homeostasis: ↓TNF-α ↑Junction protein- coding mRNAs L cell GLP-1 T J Neuroprotectant: ↓Activation of glial cells and astrocytes ↓ 4-Hydroxy-2-nonenal
levels ↓DNA damage –Antioxidant –Inhibits β-amyloid fibril formation Maintains mucosal reactivity: ↑IL-22 production Associated with vascular disease: ↑Oxidative stress ↑ Smooth muscle cell
Smooth muscle cell
proliferation ↑Aortic wall thickness and calcification Associated with chronic kidney disease: ↑Renal dysfunction –Uremic toxin Kidneys

This diagram shows the biosynthesis of bioactive compounds (indole and certain other derivatives) from tryptophan by bacteria in the gut.[11] Indole
is produced from tryptophan by bacteria that express tryptophanase.[11] Clostridium sporogenes
Clostridium sporogenes
metabolizes tryptophan into indole and subsequently 3-indolepropionic acid
3-indolepropionic acid
(IPA),[12] a highly potent neuroprotective antioxidant that scavenges hydroxyl radicals.[11][13][14] IPA binds to the pregnane X receptor (PXR) in intestinal cells, thereby facilitating mucosal homeostasis and barrier function.[11] Following absorption from the intestine and distribution to the brain, IPA confers a neuroprotective effect against cerebral ischemia and Alzheimer’s disease.[11] Lactobacillus
species metabolize tryptophan into indole-3-aldehyde (I3A) which acts on the aryl hydrocarbon receptor (AhR) in intestinal immune cells, in turn increasing interleukin-22 (IL-22) production.[11] Indole
itself triggers the secretion of glucagon-like peptide-1 (GLP-1) in intestinal L cells and acts as a ligand for AhR.[11] Indole
can also be metabolized by the liver into indoxyl sulfate, a compound that is toxic in high concentrations and associated with vascular disease and renal dysfunction.[11] AST-120 (activated charcoal), an intestinal sorbent that is taken by mouth, adsorbs indole, in turn decreasing the concentration of indoxyl sulfate in blood plasma.[11]

Genome[edit] The genomes of Lactobacillus
are highly variable, ranging in size from 1.2 to 3.3 Mb (megabases). Accordingly, the number of protein-coding genes ranges from 1,100 to about 3,200 genes.[15] Lactobacillus
contains a wealth of compound microsatellites in the coding region of the genome, which are imperfect and have variant motifs.[16] Taxonomy[edit] The genus Lactobacillus
currently contains over 180 species and encompasses a wide variety of organisms.[17] The genus is polyphyletic, with the genus Pediococcus dividing the L. casei group, and the species L. acidophilus, L. salivarius, and L. reuteri being representatives of three distinct subclades. The genus Paralactobacillus falls within the L. salivarius group. In recent years, other members of the genus Lactobacillus
(formerly known as the Leuconostoc branch of Lactobacillus) have been reclassified into the genera Atopobium, Carnobacterium, Weissella, Oenococcus, and Leuconostoc. More recently, the Pediococcus species P. dextrinicus has been reclassified as a Lactobacillus
species.[18] According to metabolism, Lactobacillus
species can be divided into three groups:

Obligately homofermentative (group I) including:

L. acidophilus, L. delbrueckii, L. helveticus, L. salivarius

Facultatively heterofermentative (group II) including:

L. casei, L. curvatus, L. plantarum, L. sakei

Obligately heterofermentative (group III) including:

L. brevis, L. buchneri, L. fermentum, L. reuteri

Human health[edit] Vaginal tract[edit] The female genital tract is one of the principal colonisation sites for human microbiota, and there is interest in the relationship between the composition of these bacteria and human health, with a domination by a single species being correlated with general welfare and good outcomes in pregnancy. In around 70% of women, a Lactobacillus
species is dominant, although that has been found to vary between American women of European origin and those of African origin, the latter group tending to have more diverse vaginal microbiota. Similar differences have also been identified in comparisons between Belgian and Tanzanian women.[2][3][4] Interactions with other pathogens[edit] Lactobacillus
species produce hydrogen peroxide which inhibits the growth and virulence of the fungal pathogen Candida albicans
Candida albicans
in vitro and in vivo.[19][20] In vitro
In vitro
studies have also shown that Lactobacillus
sp. reduce the pathogenicity of C. albicans through the production of organic acids and certain metabolites.[21] Both the presence of metabolites, such as sodium butyrate, and the decrease in environmental pH caused by the organic acids reduce the growth of hypha in C. albicans, which reduces its pathogenicity.[21] Lactobacillus
sp. also reduce the pathogenicity of C. albicans by reducing C. albicans biofilm formation.[21] Biofilm
formation is reduced by both the competition from Lactobacillus
sp., and the formation of defective biofilms which is linked to the reduced hypha growth mentioned earlier.[21] On the other hand, following antibiotic therapy, certain Candida species can suppress the regrowth of Lactobacillus
sp. at body sites where they cohabitate, such as in the gastrointestinal tract.[19][20] In addition to its effects on C. albicans, Lactobacillus
sp. also interact with other pathogens. For example, Lactobacillus reuteri can inhibit the growth of many different bacterial species by using glycerol to produce the antimicrobial substance called reuterin.[22] Another example is Lactobacillus
salivarius, which interacts with many pathogens through the production of salivaricin B, a bacteriocin.[23] Probiotics[edit] Lactobacillus
species administered in combination with other probiotics benefits cases of irritable bowel syndrome (IBS), although the extent of efficacy is still uncertain.[24] The probiotics help treat IBS by returning homeostasis when the gut microbiota experiences unusually high levels of opportunistic bacteria.[6] In addition, Lactobacillus
species can be administered as probiotics during cases of infection by the ulcer-causing bacterium Helicobacter pylori.[25] Helicobacter pylori
Helicobacter pylori
is linked to cancer, and antibiotic resistance impedes the success of current antibiotic-based eradication treatments.[25] When Lactobacillus
probiotics are administered along with the treatment as an adjuvant, its efficacy is substantially increased and side effects may be lessened.[25] Also, Lactobacillus
is used to help control urogenital and vaginal infections, such as bacterial vaginosis (BV). Lactobacillus
produce bacteriocins to suppress pathogenic growth of certain bacteria,[26] as well as lactic acid and H2O2 (hydrogen peroxide). Lactic acid
Lactic acid
lowers the vaginal pH to around 4.5 or less, hampering the survival of other bacteria, and H2O2 reestablishes the normal bacterial flora and normal vaginal pH.[26] In children, Lactobacillus
strains such as L. rhamnosus are associated with a reduction of atopic eczema, also known as dermatitis, due to anti-inflammatory cytokines secreted by this probiotic bacteria.[6] Oral health[edit]

Dental caries

Some Lactobacillus
species have been associated with cases of dental caries (cavities). Lactic acid
Lactic acid
can corrode teeth, and the Lactobacillus
count in saliva has been used as a "caries test" for many years. Lactobacilli characteristically cause existing carious lesions to progress, especially those in coronal caries. The issue is, however, complex, as recent studies show probiotics can allow beneficial lactobacilli to populate sites on teeth, preventing streptococcal pathogens from taking hold and inducing dental decay. The scientific research of lactobacilli in relation to oral health is a new field and only a few studies and results have been published.[27][28] Some studies have provided evidence of certain Lactobacilli which can be a probiotic for oral health.[29] Some species, but not all, show evidence in defense to dental caries.[29] Due to these studies, there have been applications of incorporating such probiotics in chewing gum and lozenges.[29] There is also evidence of certain Lactobacilli that are beneficial in the defense of periodontal disease such as gingivitis and periodontitis.[29] Food production[edit] Some Lactobacillus
species are used as starter cultures in industry for controlled fermentation in the production of yogurt, cheese, sauerkraut, pickles, beer, cider, kimchi, cocoa, kefir, and other fermented foods, as well as animal feeds. The antibacterial and antifungal activity of Lactobacillus
species rely on production of bacteriocins and low molecular weight compounds that inhibits these microorganisms.[30][31] Sourdough
bread is made either spontaneously, by taking advantage of the bacteria naturally present in flour, or by using a "starter culture", which is a symbiotic culture of yeast and lactic acid bacteria growing in a water and flour medium. The bacteria metabolize sugars into lactic acid, which lowers the pH of their environment, creating a signature "sourness" associated with yogurt, sauerkraut, etc. In many traditional pickling processes, vegetables are submerged in brine, and salt-tolerant Lactobacillus
species feed on natural sugars found in the vegetables. The resulting mix of salt and lactic acid is a hostile environment for other microbes, such as fungi, and the vegetables are thus preserved—remaining edible for long periods. Lactobacilli, especially L. casei and L. brevis, are some of the most common beer spoilage organisms. They are, however, essential to the production of sour beers such as Belgian lambics and American wild ales, giving the beer a distinct tart flavor. See also[edit]

L. anticaries Lactic acid
Lactic acid
fermentation MRS agar Pediococcus Probiotics Proteobiotics


^ Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; et al. (October 2006). "Comparative genomics of the lactic acid bacteria". Proc Natl Acad Sci U S A. 103 (42): 15611–6. doi:10.1073/pnas.0607117103. PMC 1622870 . PMID 17030793.  ^ a b Petrova, Mariya I.; Lievens, Elke; Malik, Shweta; Imholz, Nicole; Lebeer, Sarah (2015). " Lactobacillus
species as biomarkers and agents that can promote various aspects of vaginal health". Frontiers in Physiology. 6. doi:10.3389/fphys.2015.00081. ISSN 1664-042X.  ^ a b Ma, Bing; Forney, Larry J.; Ravel, Jacques (20 September 2012). "Vaginal Microbiome: Rethinking Health and Disease". Annual Review of Microbiology. 66 (1): 371–389. doi:10.1146/annurev-micro-092611-150157. ISSN 0066-4227. PMC 3780402 . PMID 22746335.  ^ a b Fettweis, JM; Brooks, JP; Serrano, MG; Sheth, NU; Girerd, PH; Edwards, DJ; Strauss, JF; Jefferson, KK; Buck, GA (2014). "Differences in vaginal microbiome in African American women versus women of European ancestry". Microbiology. 160 (Pt 10): 2272–82. doi:10.1099/mic.0.081034-0. PMC 4178329 . PMID 25073854.  ^ Salas-Jara, Maria Jose; Alejandra Ilabaca; Marco Vega; Apolinaria García (September 20, 2016). " Biofilm
Forming Lactobacillus: New Challenges for the Development of Probiotics". NCBI. 4 (3): 35. doi:10.3390/microorganisms4030035. PMC 5039595 . PMID 27681929.  ^ a b c Martin, Rebeca; Sylvie Miquel; Jonathan Ulmer; Noura Kechaou; Philippe Langella; Luis G Bermúdez-Humarán (July 23, 2013). "Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease". NCBI. 12 (71). doi:10.1186/1475-2859-12-71. PMC 3726476 . PMID 23876056.  ^ Inglin, Raffael. "PhD Thesis - Combined Phenotypic-Genotypic Analyses of the Genus
and Selection of Cultures for Biopreservation of Fermented Food". ETHZ research collection. ETH Zurich. doi:10.3929/ethz-b-000214904. Retrieved 3 January 2018.  ^ Zaunmüller, T.; Eichert, M.; Richter, H.; Unden, G. (September 2006). "Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids". Applied Microbiology and Biotechnology. 72 (3): 421–429. doi:10.1007/s00253-006-0514-3.  ^ a b Archibald, Frederick S.; Fridovich, Irwin (June 1981). "Manganese, Superoxide Dismutase, and Oxygen Tolerance in Some Lactic Acid Bacteria". Journal of Bacteriology. 146 (3): 928–936. Retrieved October 5, 2017.  ^ Smalla, Pamela LC; Watermanb, Scott R (June 1998). "Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli". Trends in Microbiology. 6 (6): 214–216. doi:10.1016/S0966-842X(98)01285-2.  ^ a b c d e f g h i Zhang LS, Davies SS (April 2016). "Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions". Genome Med. 8 (1): 46. doi:10.1186/s13073-016-0296-x. PMC 4840492 . PMID 27102537. Lactobacillus
spp. convert tryptophan to indole-3-aldehyde (I3A) through unidentified enzymes [125]. Clostridium sporogenes
Clostridium sporogenes
convert tryptophan to IPA [6], likely via a tryptophan deaminase. ... IPA also potently scavenges hydroxyl radicals  Table 2: Microbial metabolites: their synthesis, mechanisms of action, and effects on health and disease Figure 1: Molecular mechanisms of action of indole and its metabolites on host physiology and disease ^ Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (March 2009). "Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites". Proc. Natl. Acad. Sci. U.S.A. 106 (10): 3698–3703. doi:10.1073/pnas.0812874106. PMC 2656143 . PMID 19234110. Production of IPA was shown to be completely dependent on the presence of gut microflora and could be established by colonization with the bacterium Clostridium sporogenes.  IPA metabolism diagram ^ "3-Indolepropionic acid". Human Metabolome Database. University of Alberta. Retrieved 12 October 2015. Indole-3-propionate (IPA), a deamination product of tryptophan formed by symbiotic bacteria in the gastrointestinal tract of mammals and birds. 3-Indolepropionic acid has been shown to prevent oxidative stress and death of primary neurons and neuroblastoma cells exposed to the amyloid beta-protein in the form of amyloid fibrils, one of the most prominent neuropathologic features of Alzheimer's disease. 3-Indolepropionic acid
3-Indolepropionic acid
also shows a strong level of neuroprotection in two other paradigms of oxidative stress. (PMID 10419516 ) Origin:  • Endogenous  • Microbial  ^ Chyan YJ, Poeggeler B, Omar RA, Chain DG, Frangione B, Ghiso J, Pappolla MA (July 1999). "Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid". J. Biol. Chem. 274 (31): 21937–21942. doi:10.1074/jbc.274.31.21937. PMID 10419516. [Indole-3-propionic acid (IPA)] has previously been identified in the plasma and cerebrospinal fluid of humans, but its functions are not known. ... In kinetic competition experiments using free radical-trapping agents, the capacity of IPA to scavenge hydroxyl radicals exceeded that of melatonin, an indoleamine considered to be the most potent naturally occurring scavenger of free radicals. In contrast with other antioxidants, IPA was not converted to reactive intermediates with pro-oxidant activity.  ^ Mendes-Soares, Helena; Suzuki, Haruo; Hickey, Roxana J.; Forney, Larry J. (2014-04-01). "Comparative Functional Genomics of Lactobacillus
spp. Reveals Possible Mechanisms for Specialization of Vaginal Lactobacilli to Their Environment". Journal of Bacteriology. 196 (7): 1458–1470. doi:10.1128/JB.01439-13. ISSN 0021-9193. PMC 3993339 . PMID 24488312.  ^ Basharat, Z; Yasmin, A (2015). "Survey of compound microsatellites in multiple Lactobacillus
genomes". Canadian Journal of Microbiology. 61 (12): 898–902. doi:10.1139/cjm-2015-0136. ISSN 0008-4166.  ^ "Archived copy". Archived from the original on 2007-02-02. Retrieved 2007-02-02.  ^ (IJSEM, Paper in Press). ^ a b Wang ZK, Yang YS, Stefka AT, Sun G, Peng LH (April 2014). "Review article: fungal microbiota and digestive diseases". Aliment. Pharmacol. Ther. 39 (8): 751–766. doi:10.1111/apt.12665. PMID 24612332. In addition, GI fungal infection is reported even among those patients with normal immune status. Digestive system-related fungal infections may be induced by both commensal opportunistic fungi and exogenous pathogenic fungi. ... In vitro, bacterial hydrogen peroxide or organic acids can inhibit C. albicans growth and virulence61 In vivo, Lactobacillus
sp. can inhibit the GI colonisation and infection of C. albicans62 In vivo, C. albicans can suppress Lactobacillus
sp. regeneration in the GI tract after antibiotic therapy63, 64  ^ a b Erdogan A, Rao SS (April 2015). "Small intestinal fungal overgrowth". Curr Gastroenterol Rep. 17 (4): 16. doi:10.1007/s11894-015-0436-2. PMID 25786900. Small intestinal fungal overgrowth (SIFO) is characterized by the presence of excessive number of fungal organisms in the small intestine associated with gastrointestinal (GI) symptoms. Candidiasis is known to cause GI symptoms particularly in immunocompromised patients or those receiving steroids or antibiotics. However, only recently, there is emerging literature that an overgrowth of fungus in the small intestine of non-immunocompromised subjects may cause unexplained GI symptoms. ... Fungal-bacterial interaction may act in different ways and may either be synergistic or antagonistic or symbiotic [29]. Some bacteria such as Lactobacillus
species can interact and inhibit both the virulence and growth of Candida species in the gut by producing hydrogen peroxide [30]. Any damage to the mucosal barrier or disruption of GI microbiota with chemotherapy or antibiotic use, inflammatory processes, activation of immune molecules and disruption of epithelial repair may all cause fungal overgrowth [27].  ^ a b c d Vilela, Simone FG; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia CA; Ana Lia Anbinder, Ana Lia (February 2015). " Lactobacillus acidophilus
Lactobacillus acidophilus
ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella". Virulence. 6 (1): 29–39. doi:10.4161/21505594.2014.981486. PMC 4603435 . PMID 25654408.  ^ Axelsson, L. T.; Chung, T. C.; Dobrogosz, W. J.; Lindgren, S. E. (April 1988). "Production of a Broad Spectrum Antimicrobial Substance by Lactobacillus
reuteri". Microbial Ecology in Health and Disease. 2 (2): 131–136. doi:10.3109/08910608909140210.  ^ Brink, B. ten; Minekus, M.; van der Vossen, J.M.B.M.; Leer, R.J.; Huis in't Veld, J.H.J. (August 1994). "Antimicrobial activity of lactobacilli: preliminary characterization and optimization of production of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus
Lactobacillus acidophilus
M46". Journal of Applied Microbiology. 77 (2): 140–148. doi:10.1111/j.1365-2672.1994.tb03057.x.  ^ Ford, Alexander C; Quigley, Eamonn M M; Lacy, Brian E; Lembo, Anthony J; Saito, Yuri A; Schiller, Lawrence R; Soffer, Edy E; Spiegel, Brennan M R; Moayyedi, Paul (2014). "Efficacy of Prebiotics, Probiotics, and Synbiotics in Irritable Bowel Syndrome and Chronic Idiopathic Constipation: Systematic Review and Meta-analysis". The American Journal of Gastroenterology. 109 (10): 1547–1561. doi:10.1038/ajg.2014.202. ISSN 0002-9270. PMID 25070051.  ^ a b c Ruggiero, Paolo (November 15, 2014). "Use of Probiotics
in the fight against Helicobacter pylori". NCBI. 5 (4): 384–391. doi:10.4291/wjgp.v5.i4.384. PMC 4231502 . PMID 25400981.  ^ a b Cribby, Sarah; Michelle Taylor; Greg Reid (March 9, 2009). "Vaginal Microbiota and the Use of Probiotics". NCBI. 2008: 1–9. doi:10.1155/2008/256490. PMC 2662373 . PMID 19343185.  ^ Twetman, S; Stecksén-Blicks, C (2008). " Probiotics
and oral health effects in children". International Journal of Paediatric Dentistry. 18 (1): 3–10. doi:10.1111/j.1365-263X.2007.00885.x. PMID 18086020.  ^ Meurman, J. H.; Stamatova, I (2007). "Probiotics: Contributions to oral health". Oral Diseases. 13 (5): 443–51. doi:10.1111/j.1601-0825.2007.01386.x. PMID 17714346.  ^ a b c d Grenier, Daniel; et al. (October 2009). " Probiotics
for Oral Health: Myth or Reality?" (PDF). Professional Issues. 75 (8): 585–590 – via Google.  ^ Inglin, Raffael C. (2015). "High-throughput screening assays for antibacterial and antifungal activities of Lactobacillus
species". Journal of Microbiological Methods. 114 (July 2015): 26–29. doi:10.1016/j.mimet.2015.04.011.  ^ Inglin, Raffael. "PhD Thesis - Combined Phenotypic-Genotypic Analyses of the Genus
and Selection of Cultures for Biopreservation of Fermented Food". ETHZ research collection. ETH Zurich. Retrieved 3 January 2018. 

External links[edit]

Data related to Lactobacillus
at Wikispecies List of species of the genus Lactobacillus Lactobacillus
at Milk the Funk Wiki Lactobacillus
at BacDive - the Bacterial Diversity Metadatabase

v t e



Dahi (curd) Buffalo curd Dadiah Dhau Frozen Nai lao Soy Strained


Lactobacillus delbrueckii subsp. bulgaricus Streptococcus thermophilus Lactobacillus Bifidobacterium


Borani Churri Çılbır Cucumber raita Dahi chutney Dovga Jameed Kashk Mitha dahi Parfait Raita Shrikhand Tarator Tzatziki Zhoixo


Acidophiline Ayran Chaas Chal Chalap Doogh Lassi Leben Mattha Nai lao Omaere Qatiq Ryazhenka Stewler


Fermented milk products Amasi Buttermilk Calpis Clabber Crème fraîche Filmjölk Jocoque Kefir Kumis Matzoon Mursik Quark Skyr Smetana Sour cream Soured milk Viili Yakult Ymer Whey

v t e

Prokaryotes: Bacteria
classification (phyla and orders)

Domain Archaea Bacteria Eukaryota (Supergroup Plant Hacrobia Heterokont Alveolata Rhizaria Excavata Amoebozoa Opisthokonta

Animal Fungi)

G-/ OM

Terra-/ Glidobacteria (BV1)



Deinococcales Thermales


Anaerolineales Caldilineales Chloroflexales Herpetosiphonales Dehalococcoidales Ktedonobacterales Thermogemmatisporales Thermomicrobiales Sphaerobacterales

other glidobacteria

Thermodesulfobacteria thermophiles

Aquificae Thermotogae


Proteobacteria (BV2)


Caulobacterales Kiloniellales Kordiimonadales Magnetococcales Parvularculales Rhizobiales Rhodobacterales Rhodospirillales Rickettsiales Sneathiellales Sphingomonadales


Burkholderiales Hydrogenophilales Methylophilales Neisseriales Nitrosomonadales Procabacteriales Rhodocyclales


Acidithiobacillales Aeromonadales Alteromonadales Cardiobacteriales Chromatiales Enterobacteriales Legionellales Methylococcales Oceanospirillales Orbales Pasteurellales Pseudomonadales Salinisphaerales Thiotrichales Vibrionales Xanthomonadales


Bdellovibrionales Desulfarculales Desulfobacterales Desulfovibrionales Desulfurellales Desulfuromonadales Myxococcales Syntrophobacterales Syntrophorhabdales


Campylobacterales Nautiliales






Sphingobacteria (FCB group)

Fibrobacteres Chlorobi

Chlorobiales Ignavibacteriales


Bacteroidales Cytophagales Flavobacteriales Sphingobacteriales

Planctobacteria/ (PVC group)

Chlamydiae Lentisphaerae

Lentisphaerales Oligosphaerales Victivallales


Phycisphaerales Planctomycetales


Puniceicoccales Opitutales Chthoniobacterales Verrucomicrobiales


Other GN


Acidobacteriales Acanthopleuribacterales Holophagales Solibacterales


Armatimonadales Chthonomonadales Fimbriimonadales

Caldiserica Chrysiogenetes Deferribacteres Dictyoglomi Elusimicrobia Fusobacteria Gemmatimonadetes Nitrospirae Synergistetes

G+/ no OM

Firmicutes (BV3)


Bacillales Lactobacillales


Clostridiales Halanaerobiales Thermoanaerobacteriales Natranaerobiales





Tenericutes/ Mollicutes

Mycoplasmatales Entomoplasmatales Anaeroplasmatales Acholeplasmatales Haloplasmatales



Actinobacteria (BV5)


Actinomycetales Bifidobacteriales






Euzebyales Nitriliruptorales


Gaiellales Rubrobacterales Thermoleophilales Solirubrobacterales

Incertae sedis

†Archaeosphaeroides †Eobacterium †Leptotrichites

Source: Bergey's Manual (2001–2012). Alternative views: Wikispecies.

v t e


Outline History

Specialties and subspecialties


Cardiac surgery Cardiothoracic surgery Colorectal surgery Eye surgery General surgery Neurosurgery Oral and maxillofacial surgery Orthopedic surgery Hand surgery Otolaryngology
(ENT) Pediatric surgery Plastic surgery Reproductive surgery Surgical oncology Thoracic surgery Transplant surgery Trauma surgery Urology


Vascular surgery

Internal medicine

/ Immunology Angiology Cardiology Endocrinology Gastroenterology


Geriatrics Hematology Hospital medicine Infectious disease Nephrology Oncology Pulmonology Rheumatology

and gynaecology

Gynaecology Gynecologic oncology Maternal–fetal medicine Obstetrics Reproductive endocrinology and infertility Urogynecology



Interventional radiology Nuclear medicine


Anatomical pathology Clinical pathology Clinical chemistry Clinical immunology Cytopathology Medical microbiology Transfusion medicine

Other specialties

Addiction medicine Adolescent medicine Anesthesiology Dermatology Disaster medicine Diving medicine Emergency medicine

Mass-gathering medicine

Family medicine General practice Hospital medicine Intensive-care medicine Medical genetics Neurology

Clinical neurophysiology

Occupational medicine Ophthalmology Oral medicine Pain management Palliative care Pediatrics


Physical medicine and rehabilitation
Physical medicine and rehabilitation
(PM&R) Preventive medicine Psychiatry Public health Radiation oncology Reproductive medicine Sexual medicine Sleep medicine Sports medicine Transplantation medicine Tropical medicine

Travel medicine


Medical education

Medical school Bachelor of Medicine, Bachelor of Surgery Bachelor of Medical Sciences Master of Medicine Master of Surgery Doctor of Medicine Doctor of Osteopathic Medicine MD–PhD

Related topics

Allied health

Dentistry Podiatry Physiotherapy

Nanomedicine Molecular oncology Personalized medicine Veterinary medicine Physician

Chief physician

History of medicine


Taxon identifiers

Wd: Q1061596 EoL: 83233 EPPO: 1LACBG GBIF: 3223445 iNaturalist: 123341 ITIS: 957444 NCBI: 1578 WoRMS: 567355

Authority control