LCD classification
   HOME

TheInfoList



OR:

There are various classifications of the electro-optical modes of liquid crystal displays (LCDs).


LCD operation in a nutshell

The operation of TN, VA and IPS- LCDs can be summarized as follows: * a well aligned LC configuration is deformed by an applied electric field, * this deformation changes the orientation of the local LC optical axis with respect to the direction of light propagation through the LC layer, * this change of orientation changes the polarization state of the light propagating through the LC layer, * this change of the polarization state is converted into a change of intensity by
dichroic In optics, a dichroic material is either one which causes visible light to be split up into distinct beams of different wavelengths ( colours) (not to be confused with dispersion), or one in which light rays having different polarizations are ...
absorption, usually by external dichroic polarizers.


Activation

Liquid crystals can be aligned by both magnetic and electric fields. The strength of the required magnetic field is too high to be feasible for display applications. One electro-optical effect with LCs requires a current through the LC-cell; all other practiced electro-optical effects only require an electric field (without current) for alignment of the LC.


Absorption Effects

The state of polarization of the light traveling through the LC layer cannot be perceived by human observers, it must be converted into intensity (e.g. luminance) in order to become perceivable. This is achieved with absorption by dichroic dyes and dichroic polarizers.


Polymer Dispersed Liquid Crystals

Liquid crystals with low molecular weight can be mixed with high molecular weight polymers, followed by phase-separation to form a kind of spongy matrix filled with LC droplets. An external electric field can align the LC to match its index with that of the polymer matrix, switching that cell from a milky (scattering) state to a clear transparent state. When dichroic dyes are dissolved in the LC an electric field can switch the PDLC from an absorbing state to a fairly transparent state. When the amount of polymer is small compared to that of the LC there will be no separation of both components, but the polymer forms an anisotropic fiber-like network within the LC that stabilizes the state in which it has been formed. In such a way, certain physical properties (e.g. elasticities, viscosities, and thus threshold voltages and response times, respectively) can be controlled.


Bistable LCDs

For some applications bistability of electro-optical effects is highly advantageous, since the optical response (visual information) is maintained even after removal of the electrical activation, thus saving battery charge. These effects are beneficial when the displayed visual information is changed only in extended intervals (e.g. electronic paper, electronic price tags, etc.).


Reduction of Variations with Viewing Direction in LCDs

With the direction of light propagation in the LC layer also the state of polarization of the light changes, and, as a consequence, the intensity and the spectral distribution of transmitted light changes too. In order to reduce such unwanted variations to a minimum, two approaches are used in actual LC displays: multi-domain approaches and application of external birefringent layers (retarder sheets).


References

{{Reflist, 2


Literature

* Pochi Yeh, Claire Gu, Optics of Liquid Crystal Displays, John Wiley & Sons, 1999 * D.K. Yang, S.T. Wu, Fundamentals of Liquid Crystal Devices, Wiley SID Series in Display Technology, 2006 Liquid crystal displays