Kleetope
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
and
polyhedral combinatorics Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral co ...
, the Kleetope of a
polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all o ...
or higher-dimensional
convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the w ...
is another polyhedron or polytope formed by replacing each
facet Facets () are flat faces on geometric shapes. The organization of naturally occurring facets was key to early developments in crystallography, since they reflect the underlying symmetry of the crystal structure. Gemstones commonly have facets cut ...
of with a shallow
pyramid A pyramid (from el, πυραμίς ') is a structure whose outer surfaces are triangular and converge to a single step at the top, making the shape roughly a pyramid in the geometric sense. The base of a pyramid can be trilateral, quadrilate ...
. Kleetopes are named after
Victor Klee Victor LaRue Klee, Jr. (September 18, 1925 – August 17, 2007) was a mathematician specialising in convex sets, functional analysis, analysis of algorithms, optimization, and combinatorics. He spent almost his entire career at the University of ...
.


Examples

The
triakis tetrahedron In geometry, a triakis tetrahedron (or kistetrahedron) is a Catalan solid with 12 faces. Each Catalan solid is the dual of an Archimedean solid. The dual of the triakis tetrahedron is the truncated tetrahedron. The triakis tetrahedron can be se ...
is the Kleetope of a
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all ...
, the triakis octahedron is the Kleetope of an
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
, and the
triakis icosahedron In geometry, the triakis icosahedron (or kisicosahedronConway, Symmetries of things, p.284) is an Archimedean dual solid, or a Catalan solid. Its dual is the truncated dodecahedron. Cartesian coordinates Let \phi be the golden ratio. The 12 ...
is the Kleetope of an
icosahedron In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
. In each of these cases the Kleetope is formed by adding a triangular pyramid to each face of the original polyhedron. The tetrakis hexahedron is the Kleetope of the
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only ...
, formed by adding a square pyramid to each of its faces, and the
pentakis dodecahedron In geometry, a pentakis dodecahedron or kisdodecahedron is the polyhedron created by attaching a pentagonal pyramid to each face of a regular dodecahedron; that is, it is the Kleetope of the dodecahedron. It is a Catalan solid, meaning that it ...
is the Kleetope of the
dodecahedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
, formed by adding a pentagonal pyramid to each face of the dodecahedron. The base polyhedron of a Kleetope does not need to be a
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
. For instance, the disdyakis dodecahedron is the Kleetope of the
rhombic dodecahedron In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron. Properties The rhombic dodecahed ...
, formed by replacing each
rhombus In plane Euclidean geometry, a rhombus (plural rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The ...
face of the dodecahedron by a rhombic pyramid, and the disdyakis triacontahedron is the Kleetope of the
rhombic triacontahedron In geometry, the rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Ca ...
. In fact, the base polyhedron of a Kleetope does not need to be
Face-transitive In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congrue ...
, as can be seen from the tripentakis icosidodecahedron above. The
Goldner–Harary graph In the mathematical field of graph theory, the Goldner–Harary graph is a simple undirected graph with 11 vertices and 27 edges. It is named after A. Goldner and Frank Harary, who proved in 1975 that it was the smallest non-Hamiltonian maximal ...
may be represented as the graph of vertices and edges of the Kleetope of the
triangular bipyramid In geometry, the triangular bipyramid (or dipyramid) is a type of hexahedron, being the first in the infinite set of face-transitive bipyramids. It is the dual of the triangular prism with 6 isosceles triangle faces. As the name suggests, ...
.


Definitions

One method of forming the Kleetope of a polytope is to place a new vertex outside , near the centroid of each facet. If all of these new vertices are placed close enough to the corresponding centroids, then the only other vertices visible to them will be the vertices of the facets from which they are defined. In this case, the Kleetope of is the
convex hull In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space ...
of the union of the vertices of and the set of new vertices. Alternatively, the Kleetope may be defined by duality and its dual operation,
truncation In mathematics and computer science, truncation is limiting the number of digits right of the decimal point. Truncation and floor function Truncation of positive real numbers can be done using the floor function. Given a number x \in \mathb ...
: the Kleetope of is the
dual polyhedron In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the oth ...
of the truncation of the dual of .


Properties and applications

If has enough vertices relative to its dimension, then the Kleetope of is ''dimensionally unambiguous'': the graph formed by its edges and vertices is not the graph of a different polyhedron or polytope with a different dimension. More specifically, if the number of vertices of a -dimensional polytope is at least , then is dimensionally unambiguous. If every -dimensional face of a -dimensional polytope is a
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
, and if , then every -dimensional face of is also a simplex. In particular, the Kleetope of any three-dimensional polyhedron is a simplicial polyhedron, a polyhedron in which all facets are triangles. Kleetopes may be used to generate polyhedra that do not have any
Hamiltonian cycle In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex ...
s: any path through one of the vertices added in the Kleetope construction must go into and out of the vertex through its neighbors in the original polyhedron, and if there are more new vertices than original vertices then there are not enough neighbors to go around. In particular, the
Goldner–Harary graph In the mathematical field of graph theory, the Goldner–Harary graph is a simple undirected graph with 11 vertices and 27 edges. It is named after A. Goldner and Frank Harary, who proved in 1975 that it was the smallest non-Hamiltonian maximal ...
, the Kleetope of the triangular bipyramid, has six vertices added in the Kleetope construction and only five in the bipyramid from which it was formed, so it is non-Hamiltonian; it is the simplest possible non-Hamiltonian simplicial polyhedron. If a polyhedron with vertices is formed by repeating the Kleetope construction some number of times, starting from a tetrahedron, then its
longest path In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph. A path is called ''simple'' if it does not have any repeated vertices; the length of a path ma ...
has length ; that is, the shortness exponent of these graphs is , approximately 0.630930. The same technique shows that in any higher dimension , there exist simplicial polytopes with shortness exponent . Similarly, used the Kleetope construction to provide an infinite family of examples of simplicial polyhedra with an even number of vertices that have no
perfect matching In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph , a perfect matching in is a subset of edge set , such that every vertex in the vertex set is adjacent to exactl ...
. Kleetopes also have some extreme properties related to their vertex degrees: if each edge in a
planar graph In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cro ...
is incident to at least seven other edges, then there must exist a vertex of degree at most five all but one of whose neighbors have degree 20 or more, and the Kleetope of the Kleetope of the icosahedron provides an example in which the high-degree vertices have degree exactly 20..


Notes


References

*. *. See also the same journal 6(2):33 (1975) and 8:104-106 (1977). Reference fro
listing of Harary's publications
*. *. *. *{{citation , last = Plummer , first = Michael D. , authorlink = Michael D. Plummer , doi = 10.1016/0012-365X(92)90292-N , issue = 1–3 , journal =
Discrete Mathematics Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuou ...
, mr = 1192384 , pages = 207–219 , title = Extending matchings in planar graphs IV , volume = 109 , year = 1992, doi-access = free . Polyhedra Polytopes