K-theory (physics)
   HOME

TheInfoList



OR:

In
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
, K-theory classification refers to a conjectured application of
K-theory In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometr ...
(in
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The ter ...
and
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify ...
) to superstrings, to classify the allowed Ramond–Ramond field strengths as well as the charges of stable
D-branes In string theory, D-branes, short for ''Dirichlet membrane'', are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes were discovered by Jin Dai, Leigh, and Polc ...
. In
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the su ...
K-theory has also found important applications, specially in the topological classification of
topological insulator A topological insulator is a material whose interior behaves as an electrical insulator while its surface behaves as an electrical conductor, meaning that electrons can only move along the surface of the material. A topological insulator is an ...
s, superconductors and stable Fermi surfaces (, ).


History

This conjecture, applied to D-brane charges, was first proposed by . It was popularized by who demonstrated that in
type IIB In theoretical physics, type II string theory is a unified term that includes both type IIA strings and type IIB strings theories. Type II string theory accounts for two of the five consistent superstring theories in ten dimensions. Both theorie ...
string theory arises naturally from
Ashoke Sen Ashoke Sen FRS (; born 1956) is an Indian theoretical physicist and distinguished professor at the Harish-Chandra Research Institute, Allahabad. He is also an honorary fellow in National Institute of Science Education and Research (NISER), Bhu ...
's realization of arbitrary D-brane configurations as stacks of D9 and anti-D9-branes after
tachyon condensation A tachyon () or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of physics. If such parti ...
. Such stacks of branes are inconsistent in a non-torsion Neveu–Schwarz (NS) 3-form background, which, as was highlighted by , complicates the extension of the K-theory classification to such cases. suggested a solution to this problem: D-branes are in general classified by a
twisted K-theory In mathematics, twisted K-theory (also called K-theory with local coefficients) is a variation on K-theory, a mathematical theory from the 1950s that spans algebraic topology, abstract algebra and operator theory. More specifically, twisted K-th ...
, that had earlier been defined by .


Applications

The K-theory classification of D-branes has had numerous applications. For example, used it to argue that there are eight species of
orientifold In theoretical physics orientifold is a generalization of the notion of orbifold, proposed by Augusto Sagnotti in 1987. The novelty is that in the case of string theory the non-trivial element(s) of the orbifold group includes the reversal of the ...
one-plane. applied the K-theory classification to derive new consistency conditions for flux compactifications. K-theory has also been used to conjecture a formula for the topologies of T-dual manifolds by . Recently K-theory has been conjectured to classify the
spinors In geometry and physics, spinors are elements of a complex vector space that can be associated with Euclidean space. Like geometric vectors and more general tensors, spinors transform linearly when the Euclidean space is subjected to a sli ...
in compactifications on generalized complex manifolds.


Open problems

Despite these successes, RR fluxes are not quite classified by K-theory. argued that the K-theory classification is incompatible with
S-duality In theoretical physics, S-duality (short for strong–weak duality, or Sen duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. S-duality is useful for doing calculations in theoret ...
in IIB string theory. In addition, if one attempts to classify fluxes on a compact ten-dimensional spacetime, then a complication arises due to the self-duality of the RR fluxes. The duality uses the
Hodge star In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of ...
, which depends on the metric and so is continuously valued and in particular is generically irrational. Thus not all of the RR fluxes, which are interpreted as the
Chern character In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Ya ...
s in K-theory, can be rational. However Chern characters are always rational, and so the K-theory classification must be replaced. One needs to choose a half of the fluxes to quantize, or a ''polarization'' in the
geometric quantization In mathematical physics, geometric quantization is a mathematical approach to defining a quantum theory corresponding to a given classical theory. It attempts to carry out quantization, for which there is in general no exact recipe, in such a wa ...
-inspired language of Diaconescu, Moore, and Witten and later of . Alternately one may use the K-theory of a 9-dimensional
time Time is the continued sequence of existence and event (philosophy), events that occurs in an apparently irreversible process, irreversible succession from the past, through the present, into the future. It is a component quantity of various me ...
slice as has been done by .


K-theory classification of RR fluxes

In the classical limit of
type II string theory In theoretical physics, type II string theory is a unified term that includes both type IIA strings and type IIB strings theories. Type II string theory accounts for two of the five consistent superstring theories in ten dimensions. Both theorie ...
, which is type II
supergravity In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as ...
, the Ramond–Ramond field strengths are
differential forms In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, ...
. In the quantum theory the well-definedness of the partition functions of D-branes implies that the RR field strengths obey Dirac quantization conditions when
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
is
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in Britis ...
, or when a spatial slice is compact and one considers only the (magnetic) components of the field strength which lie along the spatial directions. This led twentieth century physicists to classify RR field strengths using
cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be view ...
with integral coefficients. However some authors have argued that the cohomology of spacetime with integral coefficients is too big. For example, in the presence of Neveu–Schwarz H-flux or non-spin cycles some RR fluxes dictate the presence of D-branes. In the former case this is a consequence of the supergravity equation of motion which states that the product of a RR flux with the NS 3-form is a D-brane charge density. Thus the set of topologically distinct RR field strengths that can exist in brane-free configurations is only a subset of the cohomology with integral coefficients. This subset is still too big, because some of these classes are related by large gauge transformations. In QED there are large gauge transformations which add integral multiples of two pi to Wilson loops. The p-form potentials in type II supergravity theories also enjoy these large gauge transformations, but due to the presence of Chern-Simons terms in the supergravity actions these large gauge transformations transform not only the p-form potentials but also simultaneously the (p+3)-form field strengths. Thus to obtain the space of inequivalent field strengths from the forementioned subset of integral cohomology we must quotient by these large gauge transformations. The
Atiyah–Hirzebruch spectral sequence In mathematics, the Atiyah–Hirzebruch spectral sequence is a spectral sequence for calculating generalized cohomology, introduced by in the special case of topological K-theory. For a CW complex X and a generalized cohomology theory E^\bullet ...
constructs twisted K-theory, with a twist given by the NS 3-form field strength, as a quotient of a subset of the
cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be view ...
with integral coefficients. In the classical limit, which corresponds to working with rational coefficients, this is precisely the quotient of a subset described above in supergravity. The quantum corrections come from torsion classes and contain mod 2 torsion corrections due to the Freed-Witten anomaly. Thus twisted K-theory classifies the subset of RR field strengths that can exist in the absence of D-branes quotiented by large gauge transformations. Daniel Freed has attempted to extend this classification to include also the RR potentials using differential K-theory.


K-theory classification of D-branes

K-theory classifies D-branes in noncompact spacetimes, intuitively in spacetimes in which we are not concerned about the flux sourced by the brane having nowhere to go. While the K-theory of a 10d spacetime classifies D-branes as subsets of that spacetime, if the spacetime is the product of time and a fixed 9-manifold then K-theory also classifies the conserved D-brane charges on each 9-dimensional spatial slice. While we were required to forget about RR potentials to obtain the K-theory classification of RR field strengths, we are required to forget about RR field strengths to obtain the K-theory classification of D-branes.


K-theory charge versus BPS charge

As has been stressed by Petr Hořava, the K-theory classification of D-branes is independent of, and in some ways stronger than, the classification of BPS states. K-theory appears to classify stable D-branes missed by
supersymmetry In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories ...
based classifications. For example, D-branes with torsion charges, that is with charges in the order N cyclic group \mathbf Z_N, attract each other and so can never be BPS. In fact, N such branes can decay, whereas no superposition of branes that satisfy a Bogomolny bound may ever decay. However the charge of such branes is conserved modulo N, and this is captured by the K-theory classification but not by a BPS classification. Such torsion branes have been applied, for example, to model Douglas-Shenker strings in supersymmetric U(N)
gauge theories In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie group ...
.


K-theory from tachyon condensation

Ashoke Sen Ashoke Sen FRS (; born 1956) is an Indian theoretical physicist and distinguished professor at the Harish-Chandra Research Institute, Allahabad. He is also an honorary fellow in National Institute of Science Education and Research (NISER), Bhu ...
has conjectured that, in the absence of a topologically nontrivial NS 3-form flux, all IIB brane configurations can be obtained from stacks of spacefilling D9 and anti D9 branes via
tachyon condensation A tachyon () or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of physics. If such parti ...
. The topology of the resulting branes is encoded in the topology of the gauge bundle on the stack of the spacefilling branes. The topology of the gauge bundle of a stack of D9s and anti D9s can be decomposed into a gauge bundle on the D9's and another bundle on the anti D9's. Tachyon condensation transforms such a pair of bundles to another pair in which the same bundle is direct summed with each component in the pair. Thus the tachyon condensation invariant quantity, that is, the charge which is conserved by the tachyon condensation process, is not a pair of bundles but rather the equivalence class of a pair of bundles under direct sums of the same bundle on both sides of the pair. This is precisely the usual construction of topological K-theory. Thus the gauge bundles on stacks of D9's and anti-D9's are classified by topological K-theory. If Sen's conjecture is right, all D-brane configurations in type IIB are then classified by K-theory. Petr Horava has extended this conjecture to type IIA using D8-branes.


Twisted K-theory from MMS instantons

While the tachyon condensation picture of the K-theory classification classifies D-branes as subsets of a 10-dimensional spacetime with no NS 3-form flux, the Maldacena, Moore, Seiberg picture classifies stable D-branes with finite mass as subsets of a 9-dimensional spatial slice of spacetime. The central observation is that D-branes are not classified by integral homology because Dp-branes wrapping certain cycles suffer from a Freed-Witten anomaly, which is cancelled by the insertion of D(p-2)-branes and sometimes D(p-4)-branes that end on the afflicted Dp-brane. These inserted branes may either continue to infinity, in which case the composite object has an infinite mass, or else they may end on an anti-Dp-brane, in which case the total Dp-brane charge is zero. In either case, one may wish to remove the anomalous Dp-branes from the spectrum, leaving only a subset of the original integral cohomology. The inserted branes are unstable. To see this, imagine that they extend in time away (into the past) from the anomalous brane. This corresponds to a process in which the inserted branes decay via a Dp-brane that forms, wraps the forementioned cycle and then disappears. MMS
Juan Maldacena Juan Martín Maldacena (born September 10, 1968) is an Argentine theoretical physicist and the Carl P. Feinberg Professor in the School of Natural Sciences at the Institute for Advanced Study, Princeton. He has made significant contributions to t ...
, Gregory Moore and Nathan Seiberg. ''D-Brane Instantons and K-Theory Charges''. https://arxiv.org/abs/hep-th/0108100
refer to this process as an instanton, although really it need not be instantonic. The conserved charges are thus the nonanomolous subset quotiented by the unstable insertions. This is precisely the Atiyah-Hirzebruch spectral sequence construction of twisted K-theory as a set.


Reconciling twisted K-theory and S-duality

Diaconescu, Moore, and Witten have pointed out that the twisted K-theory classification is not compatible with the
S-duality In theoretical physics, S-duality (short for strong–weak duality, or Sen duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. S-duality is useful for doing calculations in theoret ...
covariance of type IIB string theory. For example, consider the constraint on the Ramond–Ramond 3-form field strength G3 in the Atiyah-Hirzebruch spectral sequence (AHSS): : d_3G_3=Sq^3G_3+H\cup G_3=G_3\cup G_3+H\cup G_3=0 where d3=Sq3+H is the first nontrivial differential in the AHSS, Sq3 is the third
Steenrod square In algebraic topology, a Steenrod algebra was defined by to be the algebra of stable cohomology operations for mod p cohomology. For a given prime number p, the Steenrod algebra A_p is the graded Hopf algebra over the field \mathbb_p of order p, c ...
and the last equality follows from the fact that the nth Steenrod square acting on any n-form x is x\cupx. The above equation is not invariant under S-duality, which exchanges G3 and H. Instead Diaconescu, Moore, and Witten have proposed the following S-duality covariant extension : G_3\cup G_3+H\cup G_3+H\cup H=P where P is an unknown characteristic class that depends only on the topology, and in particular not on the fluxes. have found a constraint on P using the E8 gauge theory approach to M-theory pioneered by Diaconescu, Moore, and Witten. Thus D-branes in IIB are not classified by twisted K-theory after all, but some unknown S-duality-covariant object that inevitably also classifies both fundamental strings and
NS5-brane In theoretical physics, the NS5-brane is a five-dimensional p-brane that carries a magnetic charge under the B-field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, a ...
s. However the MMS prescription for calculating twisted K-theory is easily S-covariantized, as the Freed-Witten anomalies respect S-duality. Thus the S-covariantized form of the MMS construction may be applied to construct the S-covariantized twisted K-theory, as a set, without knowing having any geometric description for just what this strange covariant object is. This program has been carried out in a number of papers, such as and , and was also applied to the classification of fluxes by . use this approach to prove Diaconescu, Moore, and Witten's conjectured constraint on the 3-fluxes, and they show that there is an additional term equal to the D3-brane charge. shows that the Klebanov-Strassler cascade of Seiberg dualities consists of a series of S-dual MMS instantons, one for each Seiberg duality. The group, \mathbf Z_N of universality classes of the SU(M+N)\times SU(M) supersymmetric
gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations ( Lie grou ...
is then shown to agree with the S-dual twisted K-theory and not with the original twisted K-theory. Some authors have proposed radically different solutions to this puzzle. For example, propose that instead of twisted K-theory, II string theory configurations should be classified by elliptic cohomology.


Researchers

Prominent researchers in this area include
Edward Witten Edward Witten (born August 26, 1951) is an American mathematical and theoretical physicist. He is a Professor Emeritus in the School of Natural Sciences at the Institute for Advanced Study in Princeton. Witten is a researcher in string theory, q ...
, Peter Bouwknegt, Angel Uranga, Emanuel Diaconescu, Gregory Moore,
Anton Kapustin Anton Nikolayevich Kapustin (born November 10, 1971, Moscow) is a Russian-American theoretical physicist and the Earle C. Anthony Professor of Theoretical Physics at the California Institute of Technology. His interests lie in quantum field theo ...
, Jonathan Rosenberg, Ruben Minasian, Amihay Hanany, Hisham Sati, Nathan Seiberg,
Juan Maldacena Juan Martín Maldacena (born September 10, 1968) is an Argentine theoretical physicist and the Carl P. Feinberg Professor in the School of Natural Sciences at the Institute for Advanced Study, Princeton. He has made significant contributions to t ...
,
Alexei Kitaev Alexei Yurievich Kitaev (russian: Алексей Юрьевич Китаев; born August 26, 1963) is a Russian–American professor of physics at the California Institute of Technology and permanent member of the Kavli Institute for Theoretica ...
, Daniel Freed, and Igor Kriz.


See also

*
Kalb–Ramond field In theoretical physics in general and string theory in particular, the Kalb–Ramond field (named after Michael Kalb and Pierre Ramond), also known as the Kalb–Ramond ''B''-field or Kalb–Ramond NS–NS ''B''-field, is a quantum field that t ...


Notes


References

*. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *.


References (condensed matter physics)

*. *. *.


Further reading

An excellent introduction to the
K-theory In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometr ...
classification of
D-branes In string theory, D-branes, short for ''Dirichlet membrane'', are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes were discovered by Jin Dai, Leigh, and Polc ...
in 10 dimensions via
Ashoke Sen Ashoke Sen FRS (; born 1956) is an Indian theoretical physicist and distinguished professor at the Harish-Chandra Research Institute, Allahabad. He is also an honorary fellow in National Institute of Science Education and Research (NISER), Bhu ...
's conjecture is the original paper "D-branes and K-theory" by
Edward Witten Edward Witten (born August 26, 1951) is an American mathematical and theoretical physicist. He is a Professor Emeritus in the School of Natural Sciences at the Institute for Advanced Study in Princeton. Witten is a researcher in string theory, q ...
; there is also an extensive review by . A very comprehensible introduction to the
twisted K-theory In mathematics, twisted K-theory (also called K-theory with local coefficients) is a variation on K-theory, a mathematical theory from the 1950s that spans algebraic topology, abstract algebra and operator theory. More specifically, twisted K-th ...
classification of conserved D-brane charges on a 9-dimensional timeslice in the presence of Neveu–Schwarz flux is .


External links


K-theory on arxiv.org
{{String theory topics , state=collapsed String theory Algebra K-theory