Isotopes of livermorium
   HOME

TheInfoList



OR:

Livermorium Livermorium is a synthetic chemical element with the symbol Lv and has an atomic number of 116. It is an extremely radioactive element that has only been created in a laboratory setting and has not been observed in nature. The element is named aft ...
(116Lv) is an
artificial element A synthetic element is one of 24 known chemical elements that do not occur naturally on Earth: they have been created by human manipulation of fundamental particles in a nuclear reactor, a particle accelerator, or the explosion of an atomic bomb; ...
, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no
stable isotope The term stable isotope has a meaning similar to stable nuclide, but is preferably used when speaking of nuclides of a specific element. Hence, the plural form stable isotopes usually refers to isotopes of the same element. The relative abundanc ...
s. The first
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
to be synthesized was 293Lv in 2000. There are four known
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
s from 290Lv to 293Lv, as well as a few suggestive indications of a possible heavier isotope 294Lv. The longest-lived of the four well-characterised isotopes is 293Lv with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
of 53 ms.


List of isotopes

, - , 290Lv , style="text-align:right" , 116 , style="text-align:right" , 174 , 290.19864(71)# , 15(+26−6) ms , α , 286Fl , 0+ , - , 291Lv , style="text-align:right" , 116 , style="text-align:right" , 175 , 291.20108(66)# , 6.3(+116−25) ms , α , 287Fl , , - , 292Lv , style="text-align:right" , 116 , style="text-align:right" , 176 , 292.20174(91)# , 18.0(+16−6) ms , α , 288Fl , 0+ , - , 293Lv , style="text-align:right" , 116 , style="text-align:right" , 177 , 293.20449(60)# , 53(+62−19) ms , α , 289Fl , , - , 294LvThis isotope is unconfirmed , style="text-align:right" , 116 , style="text-align:right" , 178 , , 54 ms# , α ? , 290Fl , 0+


Nucleosynthesis


Target-projectile combinations leading to Z=116 compound nuclei

The below table contains various combinations of targets and projectiles which could be used to form compound nuclei with atomic number 116.


Cold fusion


208Pb(82Se,''x''n)290−''x''Lv

In 1995, the team at GSI attempted the synthesis of 290Lv as a radiative capture (''x''=0) product. No
atoms Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, an ...
were detected during a six-week experimental run, reaching a cross section limit of 3 pb.


Hot fusion

''This section deals with the synthesis of nuclei of livermorium by so-called "hot" fusion reactions. These are processes which create compound nuclei at high excitation energy (~40–50 MeV, hence "hot"), leading to a reduced probability of survival from fission. The excited nucleus then decays to the ground state via the emission of 3–5 neutrons. Fusion reactions utilizing 48Ca nuclei usually produce compound nuclei with intermediate excitation energies (~30–35 MeV) and are sometimes referred to as "warm" fusion reactions. This leads, in part, to relatively high yields from these reactions.''


238U(54Cr,''x''n)292−''x''Lv

There are sketchy indications that this reaction was attempted by the team at GSI in 2006. There are no published results on the outcome, presumably indicating that no atoms were detected. This is expected from a study of the systematics of cross sections for 238U targets.


248Cm(48Ca,''x''n)296−''x''Lv (''x''=2,3,4,5?)

The first attempt to synthesise livermorium was performed in 1977 by Ken Hulet and his team at the Lawrence Livermore National Laboratory (LLNL). They were unable to detect any atoms of livermorium. Yuri Oganessian and his team at the Flerov Laboratory of Nuclear Reactions (FLNR) subsequently attempted the reaction in 1978 and met failure. In 1985, a joint experiment between Berkeley and Peter Armbruster's team at GSI, the result was again negative with a calculated cross-section limit of 10–100 pb. In 2000, Russian scientists at Dubna finally succeeded in detecting a single atom of livermorium, assigned to the isotope 292Lv. In 2001, they repeated the reaction and formed a further 2 atoms in a confirmation of their discovery experiment. A third atom was tentatively assigned to 293Lv on the basis of a missed parental alpha decay.248Cm(48Ca,4n)292116 experiment"">"Confirmed results of the 248Cm(48Ca,4n)292116 experiment"
, ''Patin et al.'', ''LLNL report (2003)''. Retrieved 2008-03-03
In April 2004, the team ran the experiment again at higher energy and were able to detect a new decay chain, assigned to 292Lv. On this basis, the original data were reassigned to 293Lv. The tentative chain is therefore possibly associated with a rare decay branch of this isotope or an isomer, 293mLv; given the possible reassignment of its daughter to 290Fl instead of 289Fl, it could also conceivably be 294Lv, although all these assignments are tentative and need confirmation in future experiments aimed at the 2n channel. In this reaction, 2 further atoms of 293Lv were detected. In 2007, in a GSI-SHIP experiment, besides four 292Lv chains and one 293Lv chain, another chain was observed, initially not assigned but later shown to be 291Lv. However, it is unclear whether it comes from the 248Cm(48Ca,5n) reaction or from a reaction with a lighter curium isotope (present in the target as an admixture), such as 246Cm(48Ca,3n). In an experiment run at the GSI during June–July 2010, scientists detected six atoms of livermorium; two atoms of 293Lv and four atoms of 292Lv. They were able to confirm both the decay data and cross sections for the fusion reaction. A 2016 experiment at RIKEN aimed at studying the 48Ca+248Cm reaction seemingly detected one atom that may be assigned to 294Lv alpha decaying to 290Fl and 286Cn, which underwent spontaneous fission; however, the first alpha from the livermorium nuclide produced was missed.


245Cm(48Ca,xn)293−xLv (x=2,3)

In order to assist in the assignment of isotope mass numbers for livermorium, in March–May 2003 the Dubna team bombarded a 245Cm target with 48Ca ions. They were able to observe two new isotopes, assigned to 291Lv and 290Lv. This experiment was successfully repeated in February–March 2005 where 10 atoms were created with identical decay data to those reported in the 2003 experiment.


As a decay product

Livermorium has also been observed in the decay of
oganesson Oganesson is a synthetic chemical element with the symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scient ...
. In October 2006 it was announced that 3 atoms of oganesson had been detected by the bombardment of
californium Californium is a radioactive chemical element with the symbol Cf and atomic number 98. The element was first synthesized in 1950 at Lawrence Berkeley National Laboratory (then the University of California Radiation Laboratory), by bombarding ...
-249 with calcium-48 ions, which then rapidly decayed into livermorium. The observation of the daughter 290Lv allowed the assignment of the parent to 294Og and proved the synthesis of
oganesson Oganesson is a synthetic chemical element with the symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scient ...
.


Fission of compound nuclei with Z=116

Several experiments have been performed between 2000 and 2006 at the
Flerov Laboratory of Nuclear Reactions The Joint Institute for Nuclear Research (JINR, russian: Объединённый институт ядерных исследований, ОИЯИ), in Dubna, Moscow Oblast (110 km north of Moscow), Russia, is an international research ce ...
in Dubna studying the fission characteristics of the compound nuclei 296,294,290Lv. Four nuclear reactions have been used, namely 248Cm+48Ca, 246Cm+48Ca, 244Pu+50Ti, and 232Th+58Fe. The results have revealed how nuclei such as this fission predominantly by expelling closed shell nuclei such as 132Sn (Z=50, N=82). It was also found that the yield for the fusion-fission pathway was similar between 48Ca and 58Fe projectiles, indicating a possible future use of 58Fe projectiles in superheavy element formation. In addition, in comparative experiments synthesizing 294Lv using 48Ca and 50Ti projectiles, the yield from fusion-fission was ~3x less for 50Ti, also suggesting a future use in SHE production.


Retracted isotopes


289Lv

In 1999, researchers at
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory (LBNL), commonly referred to as the Berkeley Lab, is a United States Department of Energy National Labs, United States national laboratory that is owned by, and conducts scientific research on behalf of, t ...
announced the synthesis of 293Og (see
oganesson Oganesson is a synthetic chemical element with the symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scient ...
), in a paper published in ''Physical Review Letters''. The claimed isotope 289Lv decayed by 11.63 MeV alpha emission with a half-life of 0.64 ms. The following year, they published a retraction after other researchers were unable to duplicate the results. In June 2002, the director of the lab announced that the original claim of the discovery of these two elements had been based on data fabricated by the principal author
Victor Ninov Victor Ninov ( bg, Виктор Нинов, born June 27, 1959) is a Bulgarian physicist and former researcher who worked primarily in creating heavy elements. He is known for the co-discoveries of elements 110, 111, and 112 (darmstadtium, ro ...
. As such, this isotope of livermorium is currently unknown.


Chronology of isotope discovery


Yields of isotopes


Hot fusion

The table below provides cross-sections and excitation energies for hot fusion reactions producing livermorium isotopes directly. Data in bold represent maxima derived from excitation function measurements. + represents an observed exit channel.


Theoretical calculations


Decay characteristics

Theoretical calculation in a quantum tunneling model supports the experimental data relating to the synthesis of 293Lv and 292Lv.


Evaporation residue cross sections

The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given. DNS = Di-nuclear system; σ = cross section


References

* Isotope masses from: ** ** * Isotopic compositions and standard atomic masses from: ** ** * Half-life, spin, and isomer data selected from the following sources. ** ** ** {{Navbox element isotopes Livermorium
Livermorium Livermorium is a synthetic chemical element with the symbol Lv and has an atomic number of 116. It is an extremely radioactive element that has only been created in a laboratory setting and has not been observed in nature. The element is named aft ...