Iron oxide nanoparticles
   HOME

TheInfoList



OR:

Iron oxide nanoparticles are iron oxide particles with diameters between about 1 and 100 nanometers. The two main forms are
magnetite Magnetite is a mineral and one of the main iron ores, with the chemical formula Fe2+Fe3+2O4. It is one of the oxides of iron, and is ferrimagnetic; it is attracted to a magnet and can be magnetized to become a permanent magnet itself. With th ...
() and its oxidized form
maghemite Maghemite (Fe2O3, γ-Fe2O3) is a member of the family of iron oxides. It has the same spinel ferrite structure as magnetite and is also ferrimagnetic. It is sometimes spelled as "maghaemite". ''Maghemite'' can be considered as an Fe(II)-deficie ...
(γ-). They have attracted extensive interest due to their superparamagnetic properties and their potential applications in many fields (although
cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, p ...
and
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow ...
are also highly magnetic materials, they are toxic and easily oxidized). Applications of iron oxide nanoparticles include
terabit The bit is the most basic unit of information in computing and digital communications. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represented a ...
magnetic storage Magnetic storage or magnetic recording is the storage of data on a magnetized medium. Magnetic storage uses different patterns of magnetisation in a magnetizable material to store data and is a form of non-volatile memory. The information is ac ...
devices,
catalysis Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
, sensors, superparamagnetic relaxometry, high-sensitivity biomolecular magnetic resonance imaging,
magnetic particle imaging Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique that directly detects superparamagnetic nanoparticle tracers. The technology has potential applications in diagnostic imaging and material science. Currently, it i ...
, magnetic fluid hyperthermia, separation of biomolecules, and targeted drug and gene delivery for medical diagnosis and therapeutics. These applications require coating of the nanoparticles by agents such as long-chain
fatty acid In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, ...
s, alkyl-substituted amines, and diols. They have been used in formulations for supplementation.


Structure

Magnetite has an inverse spinel structure with oxygen forming a face-centered cubic crystal system. In magnetite, all tetrahedral sites are occupied by and octahedral sites are occupied by both and . Maghemite differs from magnetite in that all or most of the iron is in the trivalent state () and by the presence of cation vacancies in the octahedral sites. Maghemite has a cubic
unit cell In geometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice. Despite its suggestive name, the unit cell (unlike a unit vector, for example) does not necessaril ...
in which each cell contains 32 oxygen ions, 21 ions and 2 vacancies. The cations are distributed randomly over the 8 tetrahedral and 16 octahedral sites.


Magnetic properties

Due to its 4
unpaired electron In chemistry, an unpaired electron is an electron that occupies an orbital of an atom singly, rather than as part of an electron pair. Each atomic orbital of an atom (specified by the three quantum numbers n, l and m) has a capacity to contain ...
s in 3d shell, an iron atom has a strong
magnetic moment In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electromagne ...
. Ions have also 4 unpaired electrons in 3d shell and have 5 unpaired electrons in 3d shell. Therefore, when crystals are formed from iron atoms or ions and they can be in ferromagnetic,
antiferromagnetic In materials that exhibit antiferromagnetism, the magnetic moments of atoms or molecules, usually related to the spins of electrons, align in a regular pattern with neighboring spins (on different sublattices) pointing in opposite directions. ...
, or
ferrimagnetic A ferrimagnetic material is a material that has populations of atoms with opposing magnetic moments, as in antiferromagnetism, but these moments are unequal in magnitude so a spontaneous magnetization remains. This can for example occur when ...
states. In the
paramagnetic Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, ...
state, the individual atomic
magnetic moment In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electromagne ...
s are randomly oriented, and the substance has a zero net magnetic moment if there is no magnetic field. These materials have a relative magnetic permeability greater than one and are attracted to magnetic fields. The magnetic moment drops to zero when the applied field is removed. But in a ferromagnetic material, all the atomic moments are aligned even without an external field. A
ferrimagnetic A ferrimagnetic material is a material that has populations of atoms with opposing magnetic moments, as in antiferromagnetism, but these moments are unequal in magnitude so a spontaneous magnetization remains. This can for example occur when ...
material is similar to a ferromagnet but has two different types of atoms with opposing magnetic moments. The material has a magnetic moment because the opposing moments have different strengths. If they have the same magnitude, the crystal is
antiferromagnetic In materials that exhibit antiferromagnetism, the magnetic moments of atoms or molecules, usually related to the spins of electrons, align in a regular pattern with neighboring spins (on different sublattices) pointing in opposite directions. ...
and possesses no net magnetic moment. When an external magnetic field is applied to a ferromagnetic material, the magnetization (''M'') increases with the strength of the magnetic field (''H'') until it approaches
saturation Saturation, saturated, unsaturation or unsaturated may refer to: Chemistry * Saturation, a property of organic compounds referring to carbon-carbon bonds **Saturated and unsaturated compounds ** Degree of unsaturation **Saturated fat or fatty aci ...
. Over some range of fields the magnetization has hysteresis because there is more than one stable magnetic state for each field. Therefore, a remanent magnetization will be present even after removing the external magnetic field. A single domain magnetic material (e. g. magnetic nanoparticles) that has no hysteresis loop is said to be superparamagnetic. The ordering of magnetic moments in ferromagnetic,
antiferromagnetic In materials that exhibit antiferromagnetism, the magnetic moments of atoms or molecules, usually related to the spins of electrons, align in a regular pattern with neighboring spins (on different sublattices) pointing in opposite directions. ...
, and
ferrimagnetic A ferrimagnetic material is a material that has populations of atoms with opposing magnetic moments, as in antiferromagnetism, but these moments are unequal in magnitude so a spontaneous magnetization remains. This can for example occur when ...
materials decreases with increasing temperature. Ferromagnetic and ferrimagnetic materials become disordered and lose their magnetization beyond the
Curie temperature In physics and materials science, the Curie temperature (''T''C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Cur ...
T_C and antiferromagnetic materials lose their magnetization beyond the
Néel temperature In physics and materials science, the Curie temperature (''T''C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Cur ...
T_N.
Magnetite Magnetite is a mineral and one of the main iron ores, with the chemical formula Fe2+Fe3+2O4. It is one of the oxides of iron, and is ferrimagnetic; it is attracted to a magnet and can be magnetized to become a permanent magnet itself. With th ...
is ferrimagnetic at room temperature and has a Curie temperature of 850 K.
Maghemite Maghemite (Fe2O3, γ-Fe2O3) is a member of the family of iron oxides. It has the same spinel ferrite structure as magnetite and is also ferrimagnetic. It is sometimes spelled as "maghaemite". ''Maghemite'' can be considered as an Fe(II)-deficie ...
is ferrimagnetic at room temperature, unstable at high temperatures, and loses its susceptibility with time. (Its Curie temperature is hard to determine). Both magnetite and maghemite nanoparticles are superparamagnetic at room temperature. This superparamagnetic behavior of iron oxide nanoparticles can be attributed to their size. When the size gets small enough (<10 nm),
thermal fluctuations In statistical mechanics, thermal fluctuations are random deviations of a system from its average state, that occur in a system at equilibrium.In statistical mechanics they are often simply referred to as fluctuations. All thermal fluctuations b ...
can change the direction of magnetization of the entire crystal. A material with many such crystals behaves like a paramagnet, except that the moments of entire crystals are fluctuating instead of individual atoms. Furthermore, the unique superparamagnetic behavior of iron oxide nanoparticles allows them to be manipulated magnetically from a distance. In the latter sections, external manipulation will be discussed in regards to biomedical applications of iron oxide nanoparticles. Forces are required to manipulate the path of iron oxide particles. A spatially uniform magnetic field can result in a torque on the magnetic particle, but cannot cause particle translation; therefore, the magnetic field must be a gradient to cause translational motion. The force on a point-like magnetic dipole moment due to a magnetic field is given by the equation: :\mathbf_= \mathbf \left(\mathbf\cdot\mathbf\right) In biological applications, iron oxide nanoparticles will be translate through some kind of fluid, possibly bodily fluid, in which case the aforementioned equation can be modified to: : \mathbf_= \begin \frac \mathbf\left, \mathbf\^2 & \qquad \text \\ \frac \mathbf \left( \mathbf_ \cdot \mathbf \right) & \qquad \text \end Based on these equations, there will be the greatest force in the direction of the largest positive slope of the energy density scalar field. Another important consideration is the force acting against the magnetic force. As iron oxide nanoparticles translate toward the magnetic field source, they experience Stokes' drag force in the opposite direction. The drag force is expressed below. : \mathbf_= 6\pi\,\eta\,R\,v\, In this equation, η is the fluid viscosity, R is the hydrodynamic radius of the particle, and 𝑣 is the velocity of the particle.


Synthesis

The preparation method has a large effect on shape, size distribution, and
surface chemistry Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid–liquid interfaces, solid– gas interfaces, solid–vacuum interfaces, and liquid– gas interfaces. It includes the fi ...
of the particles. It also determines to a great extent the distribution and type of structural defects or impurities in the particles. All these factors affect magnetic behavior. Recently, many attempts have been made to develop processes and techniques that would yield " monodisperse colloids" consisting of nanoparticles uniform in size and shape.


Coprecipitation

By far the most employed method is
coprecipitation In chemistry, coprecipitation (CPT) or co-precipitation is the carrying down by a precipitate of substances normally soluble under the conditions employed. Analogously, in medicine, coprecipitation is specifically the precipitation of an unbound " ...
. This method can be further divided into two types. In the first,
ferrous hydroxide Iron(II) hydroxide or ferrous hydroxide is an inorganic compound with the formula Fe(OH)2. It is produced when iron(II) salts, from a compound such as iron(II) sulfate, are treated with hydroxide ions. Iron(II) hydroxide is a white solid, but eve ...
suspensions are partially oxidized with different oxidizing agents. For example, spherical magnetite particles of narrow size distribution with mean diameters between 30 and 100 nm can be obtained from a salt, a base and a mild oxidant ( nitrate ions). The other method consists in ageing stoichiometric mixtures of ferrous and ferric hydroxides in aqueous media, yielding spherical magnetite particles homogeneous in size. In the second type, the following chemical reaction occurs: : Optimum conditions for this reaction are pH between 8 and 14, / ratio of 2:1 and a non-oxidizing environment. Being highly susceptibile to oxidation, magnetite () is transformed to maghemite (γ) in the presence of oxygen: : The size and shape of the nanoparticles can be controlled by adjusting pH, ionic strength, temperature, nature of the
salts In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively c ...
(
perchlorate A perchlorate is a chemical compound containing the perchlorate ion, . The majority of perchlorates are commercially produced salts. They are mainly used as oxidizers for pyrotechnic devices and to control static electricity in food packaging. Per ...
s,
chloride The chloride ion is the anion (negatively charged ion) Cl−. It is formed when the element chlorine (a halogen) gains an electron or when a compound such as hydrogen chloride is dissolved in water or other polar solvents. Chloride sa ...
s,
sulfate The sulfate or sulphate ion is a polyatomic anion with the empirical formula . Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many ...
s, and nitrates), or the / concentration ratio.


Hydrothermal

Hydrothermal synthesis is a common wet chemical method for forming various magnetic nanoparticles, including
magnetite Magnetite is a mineral and one of the main iron ores, with the chemical formula Fe2+Fe3+2O4. It is one of the oxides of iron, and is ferrimagnetic; it is attracted to a magnet and can be magnetized to become a permanent magnet itself. With th ...
and manganese or cobalt ferrites. The main advantage of this method is the ability to increase solutions temperatures above their boiling point, and it helps to form small size and crystalline nanoparticles.


Microemulsions

A
microemulsion Microemulsions are clear, thermodynamically stable isotropic liquid mixtures of oil, water and surfactant, frequently in combination with a cosurfactant. The aqueous phase may contain salt(s) and/or other ingredients, and the "oil" may actually be ...
is a stable isotropic
dispersion Dispersion may refer to: Economics and finance * Dispersion (finance), a measure for the statistical distribution of portfolio returns * Price dispersion, a variation in prices across sellers of the same item *Wage dispersion, the amount of variat ...
of 2 immiscible liquids consisting of nanosized domains of one or both liquids in the other stabilized by an interfacial film of surface-active molecules. Microemulsions may be categorized further as oil-in-water (o/w) or water-in-oil (w/o), depending on the dispersed and continuous phases. Water-in-oil is more popular for synthesizing many kinds of nanoparticles. The water and oil are mixed with an amphiphillic surfactant. The surfactant lowers the surface tension between water and oil, making the solution transparent. The water nanodroplets act as nanoreactors for synthesizing nanoparticles. The shape of the water pool is spherical. The size of the nanoparticles will depend on size of the water pool to a great extent. Thus, the size of the spherical nanoparticles can be tailored and tuned by changing the size of the water pool.


High-temperature decomposition of organic precursors

The decomposition of iron precursors in the presence of hot organic surfactants results in samples with good size control, narrow size distribution (5-12 nm) and good crystallinity; and the nanoparticles are easily dispersed. For biomedical applications like magnetic resonance imaging, magnetic cell separation or magnetorelaxometry, where particle size plays a crucial role, magnetic nanoparticles produced by this method are very useful. Viable iron precursors include , , or in organic solvents with surfactant molecules. A combination of Xylenes and Sodium Dodecylbenezensulfonate as a surfactant are used to create nanoreactors for which well dispersed iron(II) and iron (III) salts can react.


Biomedical applications

Magnetite and maghemite are preferred in
biomedicine Biomedicine (also referred to as Western medicine, mainstream medicine or conventional medicine)
because they are
biocompatible Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoing de ...
and potentially non-toxic to humans. Iron oxide is easily degradable and therefore useful for in vivo applications. Results from exposure of a human mesothelium cell line and a
murine The Old World rats and mice, part of the subfamily Murinae in the family Muridae, comprise at least 519 species. Members of this subfamily are called murines. In terms of species richness, this subfamily is larger than all mammal families ex ...
fibroblast cell line to seven industrially important nanoparticles showed a nanoparticle specific cytotoxic mechanism for uncoated iron oxide. Solubility was found to strongly influence the cytotoxic response. Labelling cells (e.g. stem cells, dendritic cells) with iron oxide nanoparticles is an interesting new tool to monitor such labelled cells in real time by magnetic resonance tomography. Some forms of Iron oxide nanoparticle have been found to be toxic and cause transcriptional reprogramming. Iron oxide nanoparticles are used in cancer magnetic nanotherapy that is based on the magneto-spin effects in
free-radical reaction A free-radical reaction is any chemical reaction involving free radicals. This reaction type is abundant in organic reactions. Two pioneering studies into free radical reactions have been the discovery of the triphenylmethyl radical by Moses Gomb ...
s and semiconductor material ability to generate
oxygen radicals In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spon ...
, furthermore, control
oxidative stress Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal ...
in biological media under inhomogeneous
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) li ...
. The magnetic nanotherapy is remotely controlled by external electromagnetic field
reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () p ...
(ROS) and reactive nitrogen species (RNS)-mediated local
toxicity Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subs ...
in the
tumor A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
during
chemotherapy Chemotherapy (often abbreviated to chemo and sometimes CTX or CTx) is a type of cancer treatment that uses one or more anti-cancer drugs ( chemotherapeutic agents or alkylating agents) as part of a standardized chemotherapy regimen. Chemothe ...
with antitumor magnetic complex and lesser side effects in normal tissues. Magnetic complexes with magnetic memory that consist of iron oxide nanoparticles loaded with
antitumor drug Chemotherapy (often abbreviated to chemo and sometimes CTX or CTx) is a type of cancer treatment that uses one or more anti-cancer drugs ( chemotherapeutic agents or alkylating agents) as part of a standardized chemotherapy regimen. Chemothera ...
have additional advantages over conventional antitumor drugs due to their ability to be remotely controlled while targeting with a constant magnetic field and further strengthening of their antitumor activity by moderate inductive hyperthermia (below 40 °C). The combined influence of inhomogeneous constant magnetic and electromagnetic fields during nanotherapy has initiated splitting of electron energy levels in magnetic complex and unpaired
electron transfer Electron transfer (ET) occurs when an electron relocates from an atom or molecule to another such chemical entity. ET is a mechanistic description of certain kinds of redox reactions involving transfer of electrons. Electrochemical processes ar ...
from iron oxide nanoparticles to
anticancer drug Chemotherapy (often abbreviated to chemo and sometimes CTX or CTx) is a type of cancer treatment that uses one or more anti-cancer drugs (chemotherapeutic agents or alkylating agents) as part of a standardized chemotherapy regimen. Chemotherap ...
and
tumor cells A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
. In particular, anthracycline antitumor antibiotic doxorubicin, the native state of which is
diamagnetic Diamagnetic materials are repelled by a magnetic field; an applied magnetic field creates an induced magnetic field in them in the opposite direction, causing a repulsive force. In contrast, paramagnetic and ferromagnetic materials are attracted ...
, acquires the magnetic properties of
paramagnetic Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, ...
substances.
Electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) li ...
at the
hyperfine splitting In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate energy levels and the resulting splittings in those energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nuc ...
frequency can increase the time that radical pairs are in the
triplet state In quantum mechanics, a triplet is a quantum state of a system with a spin of quantum number =1, such that there are three allowed values of the spin component, = −1, 0, and +1. Spin, in the context of quantum mechanics, is not a mechanical r ...
and hence the probability of
dissociation Dissociation, in the wide sense of the word, is an act of disuniting or separating a complex object into parts. Dissociation may also refer to: * Dissociation (chemistry), general process in which molecules or ionic compounds (complexes, or salts ...
and so the concentration of free radicals. The reactivity of magnetic particles depends on their spin state. The experimental data was received about correlation between the frequency of electromagnetic field radiation with magnetic properties and quantity paramagnetic centres of complex. It is possible to control the kinetics of
free-radical reaction A free-radical reaction is any chemical reaction involving free radicals. This reaction type is abundant in organic reactions. Two pioneering studies into free radical reactions have been the discovery of the triphenylmethyl radical by Moses Gomb ...
s by external magnetic fields and modulate the level of
oxidative stress Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal ...
(local toxicity) in
malignant tumor Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal ble ...
.
Cancer cell Cancer cells are cells that divide continually, forming solid tumors or flooding the blood with abnormal cells. Cell division is a normal process used by the body for growth and repair. A parent cell divides to form two daughter cells, and these d ...
s are then particularly vulnerable to an oxidative assault and induction of high levels of oxidative stress locally in tumor tissue, that has the potential to destroy or arrest the growth of cancer cells and can be thought as therapeutic strategy against cancer. Multifunctional magnetic complexes with magnetic memory can combine cancer magnetic nanotherapy, tumor targeting and medical imaging functionalities in theranostics approach for personalized cancer medicine. Yet, the use of inhomogeneous stationary
magnetic fields A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
to target iron oxide magnetic nanoparticles can result in enhanced tumor growth.
Magnetic force In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an e ...
transmission through magnetic nanoparticles to the tumor due to the action of the inhomogeneous stationary magnetic field reflects mechanical stimuli converting iron-induced
reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () p ...
generation to the modulation of biochemical signals. Iron oxide
nanoparticle A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 10 ...
s may also be used in
magnetic hyperthermia Hyperthermia therapy ''(or hyperthermia, or thermotherapy)'' is a type of medical treatment in which body tissue is exposed to temperatures above body temperature, in the region of 40–45 °C (104–113 °F). Hyperthermia is usually ...
as a
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
treatment method. In this method, the
ferrofluid Ferrofluid is a liquid that is attracted to the poles of a magnet. It is a colloidal liquid made of nanoscale ferromagnetic or ferrimagnetic particles suspended in a carrier fluid (usually an organic solvent or water). Each magnetic particle ...
which contains iron oxide is injected to the tumor and then heated up by an alternating high frequency magnetic field. The temperature distribution produced by this heat generation may help to destroy cancerous cells inside the tumor. The use of superparamagnetic iron oxide (SPIO) can also be used as a tracer in sentinel node biopsy instead of radioisotope.


References


External links

{{Commons category inline, Magnetite nanoparticles Iron compounds Nanoparticles by composition Experimental cancer treatments Transition metal oxides Biomagnetics