Ionotropic GABA receptors
   HOME

TheInfoList



OR:

Ionotropic GABA receptors (iGABARs) are
ligand-gated ion channel Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl− to pass through the membrane in res ...
of the
GABA receptor The GABA receptors are a class of receptors that respond to the neurotransmitter gamma-aminobutyric acid (GABA), the chief inhibitory compound in the mature vertebrate central nervous system. There are two classes of GABA receptors: GABAA and ...
s class which are activated by ''gamma''-aminobutyric acid (GABA), and include: * GABAA receptors * GABAA-ρ receptors The GABAB receptor, a
G protein-coupled receptor G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily-related p ...
, is the only
metabotropic A metabotropic receptor, also referred to by the broader term G-protein-coupled receptor, is a type of membrane receptor that initiates a number of metabolic steps to modulate cell activity. The nervous system utilizes two types of receptors: met ...
GABA receptor and its mechanism of action differs significantly from the ionotropic receptors. Functionally, in mature organisms, activation of these receptors typically results in neural inhibition, primarily via the influx of
chloride ions The chloride ion is the anion (negatively charged ion) Cl−. It is formed when the element chlorine (a halogen) gains an electron or when a compound such as hydrogen chloride is dissolved in water or other polar solvents. Chloride salts ...
, although exceptions to this general principle exist, such as during early development. Structurally, iGABARs are pentameric transmembrane ion channels, meaning they are made up of five subunits. Since there are several classes of subunits and a variety of genes encoding many members of these classes, a wide variety of structurally, and therefore functionally, distinct channels of iGABARs is observed.


Introduction

The neuromuscular junction in the CNS can be composed of a presynaptic unit located at an axon terminal with synaptic vesicles and a postsynaptic unit located at a dendrite. Neurotransmitters are chemical molecules that are released from a presynaptic unit into the synapse and received by the postsynaptic unit, resulting in a biological and electrophysiological effect. The two main types of neurotransmitters are amino acid transmitters and GABA transmitters. The release of and binding of glutamate, an amino acid transmitter, to its respective receptor manifests in an excitatory postsynaptic potential. On the other hand, the release and binding of gamma-amino butyric acid (GABA) to the GABA receptor results in an inhibitory postsynaptic potential. The ability of the GABA receptor function rests on its molecular structure of multiple binding sites and conductance levels. These receptors are prevalent in interneurons relaying messages among various regions of the brain.


The difference between ionotropic and metabotropic GABA receptors

The two types of
GABA receptor The GABA receptors are a class of receptors that respond to the neurotransmitter gamma-aminobutyric acid (GABA), the chief inhibitory compound in the mature vertebrate central nervous system. There are two classes of GABA receptors: GABAA and ...
s are the GABAA and GABAB receptors. The pentameric GABAA receptors are ionotropic, meaning that upon binding with the ligand their biological and electrophysiological effect is carried out through the conductance of ions. This is why the physiological makeup for GABAA receptors differs from GABAB in that they are
ligand-gated ion channel Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl− to pass through the membrane in res ...
s. The chloride-ion gated channels facilitate the inhibitory effect through the influx of chloride ions. However, GABAB receptors are metabotropic meaning they utilize a G-protein coupled mechanism. Since the G-protein is a heterodimeric molecule, the separation and phosphorylation of its parts result in a
signal cascade Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellular ...
, resulting in a more steady but amplified response. 


Pharmacological implications

Earlier a third type of GABA receptor was discovered and named GABAC, but recently it has been categorized as a sub-type of the GABAA receptor. Thus, the iontropic GABA receptors consist of the GABAA receptor and the GABAA-ρ receptor. There are pharmacological implications in understanding the molecular structure and function of these ionotropic receptors. Since they are targeted by neuroactive drugs, this characteristic is exploited in order to deduce their molecular structure and function in the CNS. For example, GABAA receptors respond to neuroactive drugs like
benzodiazepines Benzodiazepines (BZD, BDZ, BZs), sometimes called "benzos", are a class of depressant drugs whose core chemical structure is the fusion of a benzene ring and a diazepine ring. They are prescribed to treat conditions such as anxiety disorders, i ...
. Normally increasing a neuron's permeability to chloride ions results in inhibition; bensodiazepines further propagate this event ensuring inhibition, serving as an indirect factor. Armed with the knowledge of chloride ion permeability leading to inhibition, it is important to note that ethanol and barbiturates can directly increase the influx of chloride ions resulting in inhibition. Further characterization of the
allosteric In biochemistry, allosteric regulation (or allosteric control) is the regulation of an enzyme by binding an effector molecule at a site other than the enzyme's active site. The site to which the effector binds is termed the ''allosteric site ...
modulations of the active sites in the ionotropic gives insight on new treatments and nervous system disorders, such as panic disorder.


References

{{GABA receptor modulators GABA Ionotropic receptors