Integrative neuroscience
   HOME

TheInfoList



OR:

Integrative neuroscience is the study of
neuroscience Neuroscience is the scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions and disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, development ...
that works to unify functional organization data to better understand complex structures and behaviors. The relationship between structure and function, and how the regions and functions connect to each other. Different parts of the brain carrying out different tasks, interconnecting to come together allowing complex behavior. Integrative neuroscience works to fill gaps in knowledge that can largely be accomplished with data sharing, to create understanding of systems, currently being applied to
simulation neuroscience A simulation is the imitation of the operation of a real-world process or system over time. Simulations require the use of Conceptual model, models; the model represents the key characteristics or behaviors of the selected system or proc ...
: Computer Modeling of the brain that integrates functional groups together.


Overview

The roots of integrative neuroscience originated from the Rashevsky-Rosen school of relational biology that characterizes functional organization mathematically by abstracting away the structure (i.e., physics and chemistry). It was further expanded by Chauvet who introduced hierarchical and functional integration. Hierarchical integration is structural involving spatiotemporal dynamic continuity in Euclidean space to bring about functional organization, viz. ::''Hierarchical organization + Hierarchical integration = Functional organization'' However, functional integration is relational and as such this requires a topology not restricted to Euclidean space, but rather occupying vector spaces This means that for any given functional organization the methods of functional analysis enable a relational organization to be mapped by the functional integration, viz. ::''Functional organization + Functional integration = Relational Organization'' Thus hierarchical and functional integration entails a "neurobiology of cognitive semantics" where hierarchical organization is associated with the neurobiology and relational organization is associated with the
cognitive semantics Cognitive semantics is part of the cognitive linguistics movement. Semantics is the study of linguistic meaning. Cognitive semantics holds that language is part of a more general human Cognition, cognitive ability, and can therefore only describe t ...
. Relational organization throws away the matter; "function dictates structure", hence material aspects are entailed, while in reductionism the causal nexus between structure and dynamics entails function that obviates functional integration because the causal entailment in the brain of hierarchical integration is absent from the structure. If integrative neuroscience is studied from the viewpoint of functional organization of hierarchical levels then it is defined as causal entailment in the brain of hierarchical integration. If it is studied from the viewpoint of relational organization then it is defined as semantic entailment in the brain of functional integration. It aims to present studies of functional organization of particular brain systems across scale through hierarchical integration leading to species-typical behaviors under normal and pathological states. As such, integrative neuroscience aims for a unified understanding of brain function across scale. Spivey's continuity of mind thesis extends integrative neuroscience to the domain of continuity psychology.


Motivation

With data building up, it ends up in its respective specializations with very little overlap. With the creation of a standardized integrated database of neuroscience data, lead to statical models that would otherwise not be possible, for example, understanding and treating psychiatric disorders. It provides a framework for linking the great diversity of specializations within contemporary
neuroscience Neuroscience is the scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions and disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, development ...
, including *
Molecular neuroscience Molecular neuroscience is a branch of neuroscience that observes concepts in molecular biology applied to the nervous systems of animals. The scope of this subject covers topics such as molecular neuroanatomy, mechanisms of molecular signaling in ...
– genetic and cellular aspects of brain function * Neuroanatomy – connections, networks, neurotransmitter systems * Behavioral neuroscience – the overt consequences of neural activity *
Systems neuroscience Systems neuroscience is a subdiscipline of neuroscience and systems biology that studies the structure and function of neural circuits and systems. Systems neuroscience encompasses a number of areas of study concerned with how nerve cells behave ...
– description of sensory and motors systems *
Developmental neuroscience The development of the nervous system, or neural development (neurodevelopment), refers to the processes that generate, shape, and reshape the nervous system of animals, from the earliest stages of embryonic development to adulthood. The fiel ...
– structural and functional changes during maturation *
Cognitive neuroscience Cognitive neuroscience is the scientific field that is concerned with the study of the biological processes and aspects that underlie cognition, with a specific focus on the neural connections in the brain which are involved in mental proces ...
– channels and stages of sensory processing, including memory *
Mathematical neuroscience Computational neuroscience (also known as theoretical neuroscience or mathematical neuroscience) is a branch of neuroscience which employs mathematical models, computer simulations, theoretical analysis and abstractions of the brain to u ...
– quantitative simulation and emulation of neuronal and brain function * Clinical observations – evidence that can be gleaned from brain dysfunction This diversity is inevitable, yet has arguably created a void: neglect of the ''primary'' role of the nervous system in enabling the animal to survive and prosper. Integrative neuroscience aims to fill this perceived void.


Experimental methods

Identifying different brain regions through correlation and causal methods, combine to contribute an overall brain function and location map. Using different data collected from different methods combine to create a better interconnected and integrative understanding of the brain.


Correlation

The relationship between brain states and behavioral states. Observed through spatial and temporal differences. That pin point places in the brain affected by an action or stimuli, and the timing of the response. Tools used for this include fMRI and EEG, more information below.


Functional magnetic resonance imaging

Functional magnetic resonance imaging Functional magnetic resonance imaging or functional MRI (fMRI) measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area o ...
(fMRI) measures blood oxygen dependent response (BOLD), using
magnetic resonance Magnetic resonance is a process by which a physical excitation (resonance) is set up via magnetism. This process was used to develop magnetic resonance imaging and Nuclear magnetic resonance spectroscopy technology. It is also being used to ...
to observe blood oxygenated areas. Active areas are associated with increased blood flow, presenting a correlation relationship. The spatial localization of fMRI allows accurate information down to the nuclei and
Brodmann area A Brodmann area is a region of the cerebral cortex, in the human or other primate brain, defined by its cytoarchitecture, or histological structure and organization of cells. History Brodmann areas were originally defined and numbered by the ...
s. Certain activities such as the visual system are so rapid lasting only fractions of seconds, while other brain functions can take days or months such as memory. fMRI measures in the frame of seconds, making it difficult to measure extremely fast processes.


Electroencephalography

Electroencephalography Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical activity of the brain. The biosignals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in the neocortex ...
(EEG) allows you to see the electrical activity of the brain over time, can only measure presented stimuli responses, stimuli the experimenter presents. it uses electrode sensors places on the surface on the skull to measure synchronous neuron firing. It can not be certain activity is caused by stimuli only a correlation between a given function and brain area. EEG measures overall changes in wide regions, lacking specificity.


Causal

Brain activity is directly caused by stimulation of a specific region, as proven through experimentation.


TMS

TMS (
Transcranial magnetic stimulation Transcranial magnetic stimulation (TMS) is a noninvasive form of brain stimulation in which a changing magnetic field is used to induce an electric current at a specific area of the brain through electromagnetic induction. An electric pulse gener ...
) uses a magnetic coil releasing a burst of magnetic field that activated activity in a specific brain area. It is useful in exciting a specific area in the cortex and recording the MEPs (Motor Evoked Potentials) that occurs as a result. It gives certain causal relationships, but is limited to the cortex making it impossible to reach any deeper than the surface of the brain.


Lesions studies

When patients have natural lesions, it is an opportunity to watch how a lesion in a given region affects functionality. Or in non-human experimentation, lesions can be created by removing sections of the brain. These methods are not reversible, unlike brain studying techniques, and does not accurately show what that section of the brain are disabled due to the disruption of homeostasis in the brain. With a permeate lesion, the brain chemically adjusted and restores homeostasis Relying on natural occurrences has little control over variables such as location and size. And in cases with damage in multiple areas, differentiation is not certain with lack of mass data.


Electrode stimulation

Cortical Stimulation Mapping Cortical stimulation mapping (CSM) is a type of electrocorticography that involves a physically invasive procedure and aims to localize the function of specific brain regions through direct electrical stimulation of the cerebral cortex. It remains ...
, invasive brain surgery that probes at area of the cortex to relate different regions to function. Typically occurs during open brain surgery where electrodes are inserted in areas and observations are made. This method is limited by number of patients having open brain surgery that consent to such experimentation, and to what area of the brain is being operated on. Also performed in mice with full range over the brain.


Applications


Human Brain Project

Since the 'decade of the brain' there has been an explosion of insights into the brain and their application in most areas of medicine. With this explosion, the need for integration of data across studies, modalities and levels of understanding is increasingly recognized. A concrete exemplar of the value of large-scale data sharing has been provided by the
Human Brain Project The Human Brain Project (HBP) is a large ten-year scientific research project, based on exascale supercomputers, that aims to build a collaborative ICT-based scientific research infrastructure to allow researchers across Europe to advance knowl ...
.


Medical

The importance of large-scale integration of brain information for new approaches to medicine has been recognized. Rather than relying mainly on symptom information, a combination of brain and gene information may ultimately be required for understanding what treatment is best suited to which individual person.


Behavioral

There is also work studying empathy and social behavior trends to better understand how empathy plays a role in behavioral science, and how the brain responds to empathy, produces empathy, and develops empathy over time. Combining these functional units and the social behavior and impact work to create a better understanding of the complex behaviors that create the human experience.


References


External links


Journal of the International Neuropsychological Society

Journal of Integrative Neuroscience
{{Neuroscience Cognitive neuroscience Developmental neuroscience Neuroimaging Neuroscience Neuropsychology Physiological psychology