Inositol-phosphate phosphatase
   HOME

TheInfoList



OR:

The enzyme Inositol phosphate-phosphatase (EC 3.1.3.25) is of the
phosphodiesterase A phosphodiesterase (PDE) is an enzyme that breaks a phosphodiester bond. Usually, ''phosphodiesterase'' refers to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many ot ...
family of enzymes. It is involved in the phosphophatidylinositol signaling pathway, which affects a wide array of cell functions, including but not limited to, cell growth, apoptosis, secretion, and information processing. Inhibition of inositol monophosphatase may be key in the action of
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid ...
in treating
bipolar disorder Bipolar disorder, previously known as manic depression, is a mental disorder characterized by periods of depression and periods of abnormally elevated mood that last from days to weeks each. If the elevated mood is severe or associated with ...
, specifically
manic depression Bipolar disorder, previously known as manic depression, is a mental disorder characterized by periods of depression and periods of abnormally elevated mood that last from days to weeks each. If the elevated mood is severe or associated with ...
. The catalyzed reaction: :''myo''-inositol phosphate + H2O \rightleftharpoons ''myo''-inositol + phosphate


Nomenclature

This enzyme belongs to the family of
hydrolase Hydrolase is a class of enzyme that commonly perform as biochemical catalysts that use water to break a chemical bond, which typically results in dividing a larger molecule into smaller molecules. Some common examples of hydrolase enzymes are este ...
s, specifically those acting on phosphoric
monoester In chemistry, an ester is a compound derived from an oxoacid (organic or inorganic) in which at least one hydroxyl group () is replaced by an alkoxy group (), as in the substitution reaction of a carboxylic acid and an alcohol. Glycerides a ...
bonds. The
systematic name A systematic name is a name given in a systematic way to one unique group, organism, object or chemical substance, out of a specific population or collection. Systematic names are usually part of a nomenclature. A semisystematic name or semitrivial ...
is ''myo''-inositol-phosphate phosphohydrolase. Other names in common use include: * ''myo''-inositol-1(or 4)-monophosphatase, * inositol 1-phosphatase, * L-''myo''-inositol-1-phosphate phosphatase, * ''myo''-inositol 1-phosphatase, * inositol phosphatase, * inositol monophosphate phosphatase, * inositol-1(or 4)-monophosphatase, * ''myo''-inositol-1(or 4)-phosphate phosphohydrolase, * ''myo''-inositol monophosphatase, and * ''myo''-inositol-1-phosphatase.


Structure

The enzyme is a
dimer Dimer may refer to: * Dimer (chemistry), a chemical structure formed from two similar sub-units ** Protein dimer, a protein quaternary structure ** d-dimer * Dimer model, an item in statistical mechanics, based on ''domino tiling'' * Julius Dimer ...
comprising 277
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
residues per subunit. Each dimer exists in 5 layers of alternating
α-helices The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues ear ...
and β-sheets, totaling to 9
α-helices The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues ear ...
and β-sheets per subunit. IMPase has three
hydrophilic A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press. In contrast, hydrophobes are ...
hollow active sites, each of which bind water and magnesium molecules. These binding sites appear to be conserved in other phosphodiesterases such as
fructose 1,6-bisphosphatase The enzyme fructose bisphosphatase (EC 3.1.3.11; systematic name D-fructose-1,6-bisphosphate 1-phosphohydrolase) catalyses the conversion of fructose-1,6-bisphosphate to fructose 6-phosphate in gluconeogenesis and the Calvin cycle, which ar ...
(FBPase) and inositol polyphosphate 1-phosphatase.


Catalytic mechanism

It was previously reported that the hydrolysis of inositol monophosphate was catalyzed by IMPase through a 2-magnesium ion mechanism. However a recent 1.4 A resolution crystal structure shows 3 magnesium ions coordinating in each active binding site of the 2 dimers, supporting a 3-magnesium ion mechanism. The mechanism for hydrolysis is now thought to proceed as such: the enzyme is activated by a magnesium ion binding to binding site I, containing three water molecules, and stabilized by the negative charges on the carboxylates of Glu70 and Asp90, and the carbonyl of Ile92. Another magnesium ion then cooperatively binds to binding site 2, which has of carboxylates of Asp90, Asp93, Asp220, and three water molecules, one of which is shared by binding site 1. Then, a third magnesium weakly and non-cooperatively to the third binding site, which has 5 water molecules and residue Glu70. After all three magnesium ions have bound, the inositol monophosphatase can bind, the negatively charge phosphate group stabilized by the three positively charged magnesium ions. Finally an activated water molecule acts a nucleophile and hydrolyzes the substrate, giving inositol and inorganic phosphate.


Function

Inositol monophosphatase plays an important role in maintaining intracellular levels of myo-inositol, a molecule that forms the structural basis of several secondary messengers in eukaryotic cells. IMPase dephosphorylates the isomers of
inositol monophosphate Inositol phosphates are a group of mono- to hexaphosphorylated inositols. They play crucial roles in diverse cellular functions, such as cell growth, apoptosis, cell migration, endocytosis, and cell differentiation. The group comprises: * inosito ...
to produce inositol, mostly in the form of the stereoisomer, myo-inositol. Inositol monophosphatase is able to regulate inositol homeostasis because it lies at the convergence of two pathways that generate inositol: *The phosphatidylinositol signaling pathway *The ''de novo'' biosynthesis of inositol from
glucose 6-phosphate Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this way ...


Inositol monophosphatase in the phosphatidylinositol signaling pathway

In this pathway, G-coupled protein receptors and tyrosine kinase receptors are activated, resulting in the activation of phospholipase C, which hydrolyzes phosphatidylinositol biphosphate (PIP2), resulting in a membrane associated product,
diacylglycerol A diglyceride, or diacylglycerol (DAG), is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Two possible forms exist, 1,2-diacylglycerols and 1,3-diacylglycerols. DAGs can act as s ...
, and a water-soluble product,
inositol triphosphate Inositol trisphosphate or inositol 1,4,5-trisphosphate abbreviated InsP3 or Ins3P or IP3 is an inositol phosphate signaling molecule. It is made by hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), a phospholipid that is located in the p ...
. Diacylglycerol acts as a second messenger, activating several protein kinases and produces extended downstream signaling. Inositol triphosphate is also a second messenger which activates receptors on the endoplasmic reticulum to release calcium ion stores into the cytoplasm, creating a complex signaling system that can be involved in modulating fertilization, proliferation, contraction, cell metabolism, vesicle and fluid secretion, and information processing in neuronal cells. Overall, diacylglycerol and inositol triphosphate signaling has implications for neuronal plasticity, impacting hippocampal long term potentiation, stress-induced cognitive impairment, and neuronal growth cone spreading. Furthermore, not only is PIP2 a precursor to several signaling molecules, it can be phosphorylated at the 3’ position to become PIP3, which is involved in cell proliferation, apoptosis and cell movement. In this pathway, IMPase is the common, final step in recycling IP3 to produce PIP2. IMPase does this by dephosphorylating
inositol monophosphate Inositol phosphates are a group of mono- to hexaphosphorylated inositols. They play crucial roles in diverse cellular functions, such as cell growth, apoptosis, cell migration, endocytosis, and cell differentiation. The group comprises: * inosito ...
to produce inorganic phosphate and myo-inositol, the precursor to PIP2. Because of IMPase's crucial role in this signaling pathway, it is a potential drug target for inhibition and modulation.


Inositol monophosphatase in the ''de novo'' synthesis of ''myo''-inositol

There are at least 2 known steps in the ''de novo'' synthesis of ''myo''-inositol from
glucose 6-phosphate Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this way ...
. In the first step, glucose 6-phosphate is converted to D-inositol 1 monophosphate by the enzyme glucose 6 phosphate cyclase. Inositol monophosphatase catalyzes the final step in which D-inositol 1 monophosphate is dephosphorylated to form ''myo''-inositol.


Clinical significance

Inositol monophosphatase has historically been believed to be a direct target of lithium, the primary treatment for bipolar disorder. It is thought that
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid ...
acts according to the inositol depletion hypothesis: lithium produces its therapeutic effect by inhibiting IMPase and therefore decreasing levels of myo-inositol. Scientific support for this hypothesis exists but is limited; the complete role of lithium and inositol monophosphatase in treating bipolar disorder or reducing ''myo''-inositol levels is not well understood. In support of the inositol depletion hypothesis, researchers have shown that lithium binds uncompetitively to purified bovine inositol monophosphatase at the site of one of the magnesium ions. Rodents administered lithium showed a decrease in inositol levels, in line with the hypothesis.
Valproate Valproate (VPA) and its valproic acid, sodium valproate, and valproate semisodium forms are medications primarily used to treat epilepsy and bipolar disorder and prevent migraine headaches. They are useful for the prevention of seizures in those ...
, another mood-stabilizing drug given to bipolar disorder patients, has also been shown to mimic the effects of lithium on myo-inositol. However, some clinical studies have found that
bipolar disorder Bipolar disorder, previously known as manic depression, is a mental disorder characterized by periods of depression and periods of abnormally elevated mood that last from days to weeks each. If the elevated mood is severe or associated with ...
patients that had been administered lithium showed lower ''myo''-inositol levels, while others found no effect on ''myo''-inositol levels. Furthermore, lithium also binds to inositol polyphosphate 1-phosphatase (IPP), an enzyme also present in the phosphoinositide pathway, and could lower inositol levels through this mechanism More research is required to fully explain the role that lithium and IMPase play in bipolar disorder patients. Despite the fact that lithium is effective in treating bipolar disorder, it is an extremely toxic metal and the toxic dose is only marginally greater than the therapeutic dose. A novel inhibitor of inositol monophosphatase that is less toxic could be a more desirable treatment for bipolar disorder. Such an inhibitor would need to cross the blood–brain barrier in order to reach the inositol monophosphatase in neurons.


References


Further reading

* * * * * * * * * * * Cockcroft, S. (Ed.), Biology of Phosphoinositides, Biology of Phosphoinositides, Oxford, 2000, p. 320-338. * {{Portal bar, Biology, border=no Mood disorders Biology of bipolar disorder EC 3.1.3 Enzymes of known structure