Implications of nanotechnology
   HOME

TheInfoList



OR:

The impact of
nanotechnology Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal ...
extends from its medical, ethical, mental, legal and
environmental A biophysical environment is a biotic and abiotic surrounding of an organism or population, and consequently includes the factors that have an influence in their survival, development, and evolution. A biophysical environment can vary in scal ...
applications, to fields such as engineering, biology, chemistry, computing, materials science, and communications. Major benefits of nanotechnology include improved manufacturing methods, water purification systems, energy systems, physical enhancement, nanomedicine, better food production methods, nutrition and large-scale infrastructure auto-fabrication. Nanotechnology's reduced size may allow for automation of tasks which were previously inaccessible due to physical restrictions, which in turn may reduce labor, land, or maintenance requirements placed on humans. Potential risks include environmental, health, and safety issues; transitional effects such as displacement of traditional industries as the products of nanotechnology become dominant, which are of concern to privacy rights advocates. These may be particularly important if potential negative effects of nanoparticles are overlooked. Whether
nanotechnology Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal ...
merits special government
regulation Regulation is the management of complex systems according to a set of rules and trends. In systems theory, these types of rules exist in various fields of biology and society, but the term has slightly different meanings according to context. ...
is a controversial issue. Regulatory bodies such as the
United States Environmental Protection Agency The Environmental Protection Agency (EPA) is an independent executive agency of the United States federal government tasked with environmental protection matters. President Richard Nixon proposed the establishment of EPA on July 9, 1970; it ...
and the Health and Consumer Protection Directorate of the European Commission have started dealing with the potential risks of nanoparticles. The organic food sector has been the first to act with the regulated exclusion of engineered nanoparticles from certified organic produce, firstly in
Australia Australia, officially the Commonwealth of Australia, is a sovereign country comprising the mainland of the Australian continent, the island of Tasmania, and numerous smaller islands. With an area of , Australia is the largest country by ...
and the UK, and more recently in
Canada Canada is a country in North America. Its ten provinces and three territories extend from the Atlantic Ocean to the Pacific Ocean and northward into the Arctic Ocean, covering over , making it the world's second-largest country by to ...
, as well as for all food certified to Demeter International standards


Overview

The presence of nanomaterials (materials that contain nanoparticles) is not in itself a threat. It is only certain aspects that can make them risky, in particular their mobility and their increased reactivity. Only if certain properties of certain nanoparticles were harmful to living beings or the environment would we be faced with a genuine hazard. In this case it can be called nanopollution. In addressing the health and environmental impact of nanomaterials we need to differentiate between two types of nanostructures: (1) Nanocomposites, nanostructured surfaces and nanocomponents (electronic, optical, sensors etc.), where nanoscale particles are incorporated into a substance, material or device (“fixed” nano-particles); and (2) “free” nanoparticles, where at some stage in production or use individual nanoparticles of a substance are present. These free nanoparticles could be nanoscale species of elements, or simple compounds, but also complex compounds where for instance a nanoparticle of a particular element is coated with another substance (“coated” nanoparticle or “core-shell” nanoparticle). There seems to be consensus that, although one should be aware of materials containing fixed nanoparticles, the immediate concern is with free nanoparticles. Nanoparticles are very different from their everyday counterparts, so their adverse effects cannot be derived from the known toxicity of the macro-sized material. This poses significant issues for addressing the health and environmental impact of free nanoparticles. To complicate things further, in talking about nanoparticles it is important that a powder or liquid containing nanoparticles almost never be monodisperse, but contain instead a range of particle sizes. This complicates the experimental analysis as larger nanoparticles might have different properties from smaller ones. Also, nanoparticles show a tendency to aggregate, and such aggregates often behave differently from individual nanoparticles.


Health impact

The health impacts of
nanotechnology Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal ...
are the possible effects that the use of nanotechnological materials and devices will have on
human health Health, according to the World Health Organization, is "a state of complete physical, mental and social well-being and not merely the absence of disease and infirmity".World Health Organization. (2006)''Constitution of the World Health Organiza ...
. As nanotechnology is an emerging field, there is great debate regarding to what extent nanotechnology will benefit or pose risks for human health. Nanotechnology's health impacts can be split into two aspects: the potential for nanotechnological innovations to have medical applications to cure disease, and the potential health hazards posed by exposure to
nanomaterials * Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science-based approach to n ...
. In regards to the current global pandemic, researchers, engineers and medical professionals are using an extremely developed collection of nano science and nanotechnology approaches to explore the ways it could potentially help the medical, technical, and scientific communities to help fight the pandemic.


Medical applications

Nanomedicine is the medical application of
nanotechnology Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal ...
.Nanomedicine, Volume I: Basic Capabilities
, by Robert A. Freitas Jr. 1999,
The approaches to nanomedicine range from the medical use of
nanomaterials * Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science-based approach to n ...
, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology. Nanomedicine seeks to deliver a valuable set of research tools and clinically helpful devices in the near future. The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, and p ...
imaging. Neuro-electronic interfaces and other nanoelectronics-based sensors are another active goal of research. Further down the line, the speculative field of molecular nanotechnology believes that cell repair machines could revolutionize medicine and the medical field. Nanomedicine research is directly funded, with the US
National Institutes of Health The National Institutes of Health, commonly referred to as NIH (with each letter pronounced individually), is the primary agency of the United States government responsible for biomedical and public health research. It was founded in the lat ...
in 2005 funding a five-year plan to set up four nanomedicine centers. In April 2006, the journal Nature Materials estimated that 130 nanotech-based drugs and delivery systems were being developed worldwide. Nanomedicine is a large industry, with nanomedicine sales reaching $6.8 billion in 2004. With over 200 companies and 38 products worldwide, a minimum of $3.8 billion in nanotechnology R&D is being invested every year. As the nanomedicine industry continues to grow, it is expected to have a significant impact on the economy.


Health hazards

Nanotoxicology is the field which studies potential health risks of nanomaterials. The extremely small size of nanomaterials means that they are much more readily taken up by the human body than larger sized particles. How these nanoparticles behave inside the organism is one of the significant issues that needs to be resolved. The behavior of nanoparticles is a function of their size, shape and surface reactivity with the surrounding tissue. For example, they could cause overload on phagocytes, cells that ingest and destroy foreign matter, thereby triggering stress reactions that lead to inflammation and weaken the body's defense against other pathogens. Apart from what happens if non-degradable or slowly degradable nanoparticles accumulate in organs, another concern is their potential interaction with biological processes inside the body: because of their large surface, nanoparticles on exposure to tissue and fluids will immediately
adsorb Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a f ...
onto their surface some of the macromolecules they encounter. This may, for instance, affect the regulatory mechanisms of enzymes and other proteins. The large number of variables influencing toxicity means that it is difficult to generalise about health risks associated with exposure to nanomaterials – each new nanomaterial must be assessed individually and all material properties must be taken into account. Health and environmental issues combine in the workplace of companies engaged in producing or using nanomaterials and in the laboratories engaged in nanoscience and nanotechnology research. It is safe to say that current workplace exposure standards for dusts cannot be applied directly to nanoparticle dusts. The National Institute for Occupational Safety and Health has conducted initial research on how nanoparticles interact with the body's systems and how workers might be exposed to nano-sized particles in the manufacturing or industrial use of nanomaterials. NIOSH currently offers interim guidelines for working with nanomaterials consistent with the best scientific knowledge. At The National Personal Protective Technology Laboratory of NIOSH, studies investigating the filter penetration of nanoparticles on NIOSH-certified and EU marked respirators, as well as non-certified dust masks have been conducted. These studies found that the most penetrating particle size range was between 30 and 100 nanometers, and leak size was the largest factor in the number of nanoparticles found inside the respirators of the test dummies. Other properties of nanomaterials that influence toxicity include: chemical composition, shape, surface structure, surface charge, aggregation and solubility, and the presence or absence of
functional group In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the r ...
s of other chemicals. The large number of variables influencing toxicity means that it is difficult to generalise about health risks associated with exposure to nanomaterials – each new nanomaterial must be assessed individually and all material properties must be taken into account. Literature reviews have been showing that release of engineered nanoparticles and incurred personal exposure can happen during different work activities. The situation alerts regulatory bodies to necessitate prevention strategies and regulations at nanotechnology workplaces.


Environmental impact

The environmental impact of nanotechnology is the possible effects that the use of nanotechnological materials and devices will have on the environment. As nanotechnology is an emerging field, there is debate regarding to what extent industrial and commercial use of
nanomaterials * Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science-based approach to n ...
will affect organisms and ecosystems. Nanotechnology's environmental impact can be split into two aspects: the potential for nanotechnological innovations to help improve the environment, and the possibly novel type of pollution that nanotechnological materials might cause if released into the environment.


Environmental applications

Green nanotechnology refers to the use of
nanotechnology Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal ...
to enhance the environmental sustainability of processes producing
negative externalities In economics, an externality or external cost is an indirect cost or benefit to an uninvolved third party that arises as an effect of another party's (or parties') activity. Externalities can be considered as unpriced goods involved in either co ...
. It also refers to the use of the products of nanotechnology to enhance
sustainability Specific definitions of sustainability are difficult to agree on and have varied in the literature and over time. The concept of sustainability can be used to guide decisions at the global, national, and individual levels (e.g. sustainable livi ...
. It includes making green nano-products and using nano-products in support of sustainability. Green nanotechnology has been described as the development of
clean technologies Clean technology, in short cleantech, is any process, product, or service that reduces negative environmental impacts through significant energy efficiency improvements, the sustainable use of resources, or environmental protection activities. Cle ...
, "to minimize potential environmental and human health risks associated with the manufacture and use of nanotechnology products, and to encourage replacement of existing products with new nano-products that are more environmentally friendly throughout their
lifecycle Life cycle, life-cycle, or lifecycle may refer to: Science and academia *Biological life cycle, the sequence of life stages that an organism undergoes from birth to reproduction ending with the production of the offspring *Life-cycle hypothesis, ...
." Green nanotechnology has two goals: producing
nanomaterials * Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science-based approach to n ...
and products without harming the environment or human health, and producing nano-products that provide solutions to environmental problems. It uses existing principles of green chemistry and
green engineering Green engineering approaches the design of products and processes by applying financially and technologically feasible principles to achieve one or more of the following goals: (1) decrease in the amount of pollution that is generated by a construc ...
to make nanomaterials and nano-products without toxic ingredients, at low temperatures using less energy and renewable inputs wherever possible, and using lifecycle thinking in all design and engineering stages.


Pollution

Nanopollution is a generic name for all waste generated by nanodevices or during the nanomaterials manufacturing process. Nanowaste is mainly the group of particles that are released into the environment, or the particles that are thrown away when still on their products.


Social impact

Beyond the toxicity risks to human health and the environment which are associated with first-generation nanomaterials, nanotechnology has broader societal impact and poses broader social challenges. Social scientists have suggested that nanotechnology's social issues should be understood and assessed not simply as "downstream" risks or impacts. Rather, the challenges should be factored into "upstream" research and decision-making in order to ensure technology development that meets social objectives Many social scientists and organizations in civil society suggest that technology assessment and governance should also involve public participation. The exploration of the stakeholder's perception is also an essential component in assessing the large amount of risk associated with nanotechnology and nano-related products. Over 800 nano-related patents were granted in 2003, with numbers increasing to nearly 19,000 internationally by 2012. Corporations are already taking out broad-ranging patents on nanoscale discoveries and inventions. For example, two corporations,
NEC is a Japanese multinational information technology and electronics corporation, headquartered in Minato, Tokyo. The company was known as the Nippon Electric Company, Limited, before rebranding in 1983 as NEC. It provides IT and network soluti ...
and IBM, hold the basic patents on
carbon nanotube A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
s, one of the current cornerstones of nanotechnology. Carbon nanotubes have a wide range of uses, and look set to become crucial to several industries from electronics and computers, to strengthened materials to drug delivery and diagnostics. Nanotechnologies may provide new solutions for the millions of people in
developing countries A developing country is a sovereign state with a lesser developed industrial base and a lower Human Development Index (HDI) relative to other countries. However, this definition is not universally agreed upon. There is also no clear agreem ...
who lack access to basic services, such as safe water, reliable energy, health care, and education. The 2004 UN Task Force on Science, Technology and Innovation noted that some of the advantages of nanotechnology include production using little labor, land, or maintenance, high productivity, low cost, and modest requirements for materials and energy. However, concerns are frequently raised that the claimed benefits of nanotechnology will not be evenly distributed, and that any benefits (including technical and/or economic) associated with nanotechnology will only reach affluent nations. Longer-term concerns center on the impact that new technologies will have for society at large, and whether these could possibly lead to either a post-scarcity economy, or alternatively exacerbate the wealth gap between developed and developing nations. The effects of nanotechnology on the society as a whole, on human health and the environment, on trade, on security, on food systems and even on the definition of "human", have not been characterized or politicized.


Regulation

Significant debate exists relating to the question of whether
nanotechnology Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal ...
or nanotechnology-based products merit special government
regulation Regulation is the management of complex systems according to a set of rules and trends. In systems theory, these types of rules exist in various fields of biology and society, but the term has slightly different meanings according to context. ...
. This debate is related to the circumstances in which it is necessary and appropriate to assess new substances prior to their release into the market, community and environment. Regulatory bodies such as the
United States Environmental Protection Agency The Environmental Protection Agency (EPA) is an independent executive agency of the United States federal government tasked with environmental protection matters. President Richard Nixon proposed the establishment of EPA on July 9, 1970; it ...
and the
Food and Drug Administration The United States Food and Drug Administration (FDA or US FDA) is a federal agency of the Department of Health and Human Services. The FDA is responsible for protecting and promoting public health through the control and supervision of food ...
in the U.S. or the Health & Consumer Protection Directorate of the European Commission have started dealing with the potential risks posed by nanoparticles. So far, neither engineered nanoparticles nor the products and materials that contain them are subject to any special regulation regarding production, handling or labelling. The
Material Safety Data Sheet A safety data sheet (SDS), material safety data sheet (MSDS), or product safety data sheet (PSDS) is a document that lists information relating to occupational safety and health for the use of various substances and products. SDSs are a widel ...
that must be issued for some materials often does not differentiate between bulk and nanoscale size of the material in question and even when it does these MSDS are advisory only. The new advances and rapid growth within the field of nanotechnology have large implications, which in turn will lead to regulations, on the traditional food and agriculture sectors of the world, in particular the invention of smart and active packaging, nano sensors, nano pesticides, and nano fertilizers. Limited nanotechnology labeling and regulation may exacerbate potential human and environmental health and safety issues associated with nanotechnology. It has been argued that the development of comprehensive regulation of nanotechnology will be vital to ensure that the potential risks associated with the research and commercial application of nanotechnology do not overshadow its potential benefits. Regulation may also be required to meet community expectations about responsible development of nanotechnology, as well as ensuring that public interests are included in shaping the development of nanotechnology. In 2008, E. Marla Felcher "The Consumer Product Safety Commission and Nanotechnology," suggested that the Consumer Product Safety Commission, which is charged with protecting the public against unreasonable risks of injury or death associated with consumer products, is ill-equipped to oversee the safety of complex, high-tech products made using nanotechnology.Felcher, EM. (2008)
The Consumer Product Safety Commission and Nanotechnology
/ref>


See also

*
Fail-safes in nanotechnology Fail-safes in nanotechnology are devices or features integrated with nanotechnology which, in the event of failure, respond in a way that will cause no harm, or at least a minimum of harm, to other devices or personnel. Fail-safe principles are ...
*
International Center for Technology Assessment The International Center for Technology Assessment (ICTA) is a U.S. non-profit bi-partisan organization, based in Washington, D.C. ICTA was formed in 1994. Its executive director is Andrew Kimbrell. Its sister organization is the Center for Food S ...


References


Further reading

* Fritz Allhoff, Patrick Lin, and Daniel Moore,
What Is Nanotechnology and Why Does It Matter?: From Science to Ethics
'. (Oxford: Wiley-Blackwell, 2010). * Fritz Allhoff and Patrick Lin (eds.),
Nanotechnology & Society: Current and Emerging Ethical Issues
' (Dordrecht: Springer, 2008). * Fritz Allhoff, Patrick Lin, James Moor, and John Weckert (eds.),

' (Hoboken: John Wiley & Sons, 2007)

* Kaldis, Byron.
Epistemology of Nanotechnology
. Sage Encyclopedia of Nanoscience and Society. (Thousand Oaks: CA, Sage, 2010)
Approaches to Safe Nanotechnology: An Information Exchange with NIOSH
United States National Institute for Occupational Safety and Health, June 2007, DHHS (NIOSH) publication no. 2007-123 * - provides a global overview of the state of nanotechnology and society in Europe, the US, Japan and Canada, and examines the ethics, the environmental and public health risks, and the governance and regulation of this technology. * Dónal P O'Mathúna,
Nanoethics: Big Ethical Issues with Small Technology
' (London & New York: Continuum, 2009).


External links




Nanotechnology Now

USC's Nanoscience & Technology Studies

NELSI Global

ASU's Center on Nanotechnology and Society

UCSB's Center on Nanotechnology and Society

The Nanoethics Group

Nanotechnology

Foresight Nanotech Institute

Center for Responsible Nanotechnology

The Center for Biological and Environmental Nanotechnology

The International Council on Nanotechnology

The NanoEthicsBank

NanoEthics: Ethics for Technologies that Converge at the Nanoscale

National Institute for Occupational Safety and Health Nanotechnology topic page

UnderstandingNano

European Center for the Sustainable Impact of Nanotechnology

Center for the Environmental Implications of NanoTechnology
{{DEFAULTSORT:Impact Of Nanotechnology Ethics of science and technology Nanotechnology Occupational safety and health
Nanotechnology Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal ...