Ice algae
   HOME

TheInfoList



OR:

Ice algae are any of the various types of
algal Algae (; singular alga ) is an informal term for a large and diverse group of photosynthetic eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular mi ...
communities found in annual and multi-year sea or terrestrial ice. On sea ice in the polar oceans, ice algae communities play an important role in
primary production In ecology, primary production is the synthesis of organic compounds from atmospheric or aqueous carbon dioxide. It principally occurs through the process of photosynthesis, which uses light as its source of energy, but it also occurs through ...
. The timing of blooms of the algae is especially important for supporting higher
trophic level The trophic level of an organism is the position it occupies in a food web. A food chain is a succession of organisms that eat other organisms and may, in turn, be eaten themselves. The trophic level of an organism is the number of steps it ...
s at times of the year when light is low and ice cover still exists. Sea ice algal communities are mostly concentrated in the bottom layer of the ice, but can also occur in brine channels within the ice, in melt ponds, and on the surface. Because terrestrial ice algae occur in freshwater systems, the species composition differs greatly from that of sea ice algae. These communities are significant in that they often change the color of glaciers and ice sheets, impacting the
reflectivity The reflectance of the surface of a material is its effectiveness in Reflection (physics), reflecting radiant energy. It is the fraction of incident electromagnetic power that is reflected at the boundary. Reflectance is a component of the respon ...
of the ice itself.


Sea ice algae


Adapting to the sea ice environment

Microbial life A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in olde ...
in sea ice is extremely diverse, and includes abundant algae, bacteria and protozoa. Algae in particular dominate the sympagic environment, with estimates of more than 1000 unicellular eukaryotes found to associate with sea ice in the Arctic. Species composition and diversity vary based on location, ice type, and irradiance. In general,
pennate diatom The order Pennales is a traditional subdivision of the heterokont algae known as diatoms. The order is named for the shape of the cell walls (or valves or frustules) of pennate diatoms, which are elongated in valve view. The valves may be lin ...
s such as ''Nitschia frigida'' (in the Arctic) and '' Fragilariopsis cylindrus'' (in the Antarctic) are abundant. ''Melosira arctica'', which forms up to meter-long filaments attached to the bottom of the ice, are also widespread in the Arctic and are an important food source for marine species. While sea ice algae communities are found throughout the column of sea ice, abundance and community composition depends on the time of year. There are many microhabitats available to algae on and within sea ice, and different algal groups have different preferences. For example, in late winter/early spring, motile diatoms like ''N. frigida'' have been found to dominate the uppermost layers of the ice, as far as briny channels reach, and their abundance is greater in
multi-year ice Sea ice arises as seawater freezes. Because ice is less dense than water, it floats on the ocean's surface (as does fresh water ice, which has an even lower density). Sea ice covers about 7% of the Earth's surface and about 12% of the world's oc ...
(MYI) than in first year ice (FYI). Additionally, dinoflagellates have also been found to dominant in the early austral spring in Antarctic sea ice. Sea ice algal communities can also thrive at the surface of the ice, in surface
melt pond Melt ponds are pools of open water that form on sea ice in the warmer months of spring and summer. The ponds are also found on glacial ice and ice shelves. Ponds of melted water can also develop under the ice. Melt ponds are usually darker th ...
s, and in layers where
rafting Rafting and whitewater rafting are recreational outdoor activities which use an inflatable raft to navigate a river or other body of water. This is often done on whitewater or different degrees of rough water. Dealing with risk is often a ...
has occurred. In melt ponds, dominant algal types can vary with pond salinity, with higher concentrations of diatoms being found in melt ponds with higher salinity. Because of their adaption to low light conditions, the presence of ice algae (in particular, vertical position in the ice pack) is primarily limited by nutrient availability. The highest concentrations are found at the base of the ice because the porosity of that ice enables nutrient infiltration from seawater. To survive in the harsh sea ice environment, organisms must be able to endure extreme variations in salinity, temperature, and solar radiation. Algae living in brine channels can secrete
osmolyte Osmolytes are low-molecular weight organic compounds that influence the properties of biological fluids. Their primary role is to maintain the integrity of cells by affecting the viscosity, melting point, and ionic strength of the aqueous solution. ...
s, such as
dimethylsulfoniopropionate Dimethylsulfoniopropionate (DMSP), is an organosulfur compound with the formula (CH3)2S+CH2CH2COO−. This zwitterionic metabolite can be found in marine phytoplankton, seaweeds, and some species of terrestrial and aquatic vascular plants ...
(DMSP), which allows them to survive the high salinities in the channels after ice formation in the winter, as well as low salinities when the relatively fresh meltwater flushes the channels in the spring and summer. Some sea ice algae species secrete ice-binding proteins (IBP) as a gelatinous extracellular polymeric substance (EPS) to protect cell membranes from damage from ice crystal growth and freeze thaw cycles. EPS alters the microstructure of the ice and creates further habitat for future blooms. Surface-dwelling algae produce special pigments to prevent damage from harsh
ultraviolet radiation Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
. Higher concentrations of
xanthophyll Xanthophylls (originally phylloxanthins) are yellow pigments that occur widely in nature and form one of two major divisions of the carotenoid group; the other division is formed by the carotenes. The name is from Greek (, "yellow") and (, "lea ...
pigments act as a sunscreen that protects ice algae from photodamage when they are exposed to damaging levels of ultraviolet radiation upon transition from ice to the water column during the spring. Algae under thick ice have been reported to show some of the most extreme low light adaptations ever observed. Extreme efficiency in light utilization allows sea ice algae to build up biomass rapidly when light conditions improve at the onset of spring.


Role in ecosystem

Ice algae play a critical role in
primary production In ecology, primary production is the synthesis of organic compounds from atmospheric or aqueous carbon dioxide. It principally occurs through the process of photosynthesis, which uses light as its source of energy, but it also occurs through ...
and serve as part of the base of the polar food web by converting carbon dioxide and inorganic nutrients to oxygen and organic matter through photosynthesis in the upper ocean of both the Arctic and Antarctic. Within the Arctic, estimates of the contribution of sea ice algae to total primary production ranges from 3-25%, up to 50-57% in high Arctic regions. Sea ice algae accumulate biomass rapidly, often at the base of sea ice, and grow to form
algal mat Algal mats are one of many types of microbial mat that forms on the surface of water or rocks. They are typically composed of blue-green cyanobacteria and sediments. Formation occurs when alternating layers of blue-green bacteria and sediments ar ...
s that are consumed by
amphipods Amphipoda is an order of malacostracan crustaceans with no carapace and generally with laterally compressed bodies. Amphipods range in size from and are mostly detritivores or scavengers. There are more than 9,900 amphipod species so far describ ...
such as krill and copepods. Ultimately, these organisms are eaten by fish, whales, penguins, and dolphins. When sea ice algal communities detach from the sea ice they are consumed by pelagic grazers, such as zooplankton, as they sink through the water column and by benthic invertebrates as they settle on the seafloor. Sea ice algae as food are rich in
polyunsaturated In nutrition, biology, and chemistry, fat usually means any ester of fatty acids, or a mixture of such compounds, most commonly those that occur in living beings or in food. The term often refers specifically to triglycerides (triple es ...
and other essential fatty acids, and are the exclusive producer of certain essential
omega-3 fatty acid Omega−3 fatty acids, also called Omega-3 oils, ω−3 fatty acids or ''n''−3 fatty acids, are polyunsaturated fatty acids (PUFAs) characterized by the presence of a double bond, three atoms away from the terminal methyl group in their chem ...
s that are important for copepod egg production, egg hatching, and zooplankton growth and function.


Temporal variation

The timing of sea ice algae blooms has a significant impact on the entire ecosystem. Initiation of the bloom is primarily controlled by the return of the sun in the spring (i.e. the solar angle). Because of this, ice algae blooms usually occurs before the blooms of pelagic phytoplankton, which require higher light levels and warmer water. Early in the season, prior to the ice melt, sea ice algae constitute an important food source for higher
trophic level The trophic level of an organism is the position it occupies in a food web. A food chain is a succession of organisms that eat other organisms and may, in turn, be eaten themselves. The trophic level of an organism is the number of steps it ...
s. However, the total percentage that sea ice algae contribute to the primary production of a given ecosystem depends strongly on the extent of ice cover. The thickness of snow on the sea ice also affects the timing and size of the ice algae bloom by altering light transmission. This sensitivity to ice and snow cover has the potential to cause a mismatch between predators and their food-source, sea ice algae, within the ecosystem. This so called match/mismatch has been applied to a variety of systems. Examples have been seen in the relationship between
zooplankton Zooplankton are the animal component of the planktonic community ("zoo" comes from the Greek word for ''animal''). Plankton are aquatic organisms that are unable to swim effectively against currents, and consequently drift or are carried along by ...
species, which rely on sea ice algae and phytoplankton for food, and juvenile
walleye pollock The Alaska pollock or walleye pollock (''Gadus chalcogrammus'') is a marine fish species of the cod genus ''Gadus'' and family Gadidae. It is a semi-pelagic schooling fish widely distributed in the North Pacific, with largest concentrations fo ...
in the Bering Sea.


Bloom initialization

There are several ways in which sea ice algal blooms are thought to start their annual cycle, and hypotheses about these vary depending on water column depth, sea ice age, and taxonomic group. Where sea ice overlays deep ocean, it is proposed that cells trapped in multiyear ice brine pockets are reconnected to the water column below and quickly colonize nearby ice of all ages. This is known as the ''multiyear sea ice repository hypothesis''. This seeding source has been demonstrated in diatoms, which dominate sympagic blooms. Other groups, such as the dinoflagellates, which also bloom in the spring/summer, have been shown to maintain low cell numbers in the water column itself, and do not primarily overwinter within the ice. Where sea ice covers ocean that is somewhat shallower, resuspension of cells from the sediment may occur.


Implications of climate change

Climate change In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to ...
and warming of Arctic and Antarctic regions have the potential to greatly alter ecosystem functioning. Decreasing ice cover in polar regions is expected to lessen the relative proportion of sea ice algae production to measures of annual primary production. Thinning ice allows for greater production early in the season but early ice melting shortens the overall growing season of the sea ice algae. This melting also contributes to
stratification Stratification may refer to: Mathematics * Stratification (mathematics), any consistent assignment of numbers to predicate symbols * Data stratification in statistics Earth sciences * Stable and unstable stratification * Stratification, or st ...
of the water column that alters the availability of nutrients for algae growth by decreasing the depth of the surface
mixed layer The oceanic or limnological mixed layer is a layer in which active turbulence has homogenized some range of depths. The surface mixed layer is a layer where this turbulence is generated by winds, surface heat fluxes, or processes such as evaporat ...
and inhibiting the upwelling of nutrients from deep waters. This is expected to cause an overall shift towards pelagic phytoplankton production. Changes in multiyear ice volume will also have an impact on ecosystem function in terms of bloom seeding source adjustment. Reduction in MYI, a temporal refugia for diatoms in particular, will likely alter sympagic community composition, resulting in bloom initialization that derives from species that overwinter in the water column or sediments instead. Because sea ice algae are often the base of the food web, these alterations have implications for species of higher trophic levels. The reproduction and migration cycles of many polar primary consumers are timed with the bloom of sea ice algae, meaning that a change in the timing or location of primary production could shift the distribution of prey populations necessary for significant keystone species. Production timing may also be altered by the melting through of surface melt ponds to the seawater below, which can alter sea ice algal habitat late in the growing season in such a way as to impact grazing communities as they approach winter. The production of DMSP by sea ice algae also plays an important role in the
carbon cycle The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth. Carbon is the main component of biological compounds as well as a major componen ...
. DMSP is oxidized by other plankton to dimethylsulfide (DMS), a compound which is linked to cloud formation. Because clouds impact precipitation and the amount of solar radiation reflected back to space (
albedo Albedo (; ) is the measure of the diffuse reflection of solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body that refl ...
), this process could create a positive feedback loop. Cloud cover would increase the insolation reflected back to space by the atmosphere, potentially helping to cool the planet and support more polar habitats for sea ice algae. As of 1987, research has suggested that a doubling of cloud-condensation nuclei, of which DMS is one type, would be required to counteract warming due to increased atmospheric CO2 concentrations.


Ice algae as a tracer for paleoclimate

Sea ice plays a major role in the global climate. Satellite observations of sea ice extent date back only until the late 1970s, and longer term observational records are sporadic and of uncertain reliability. While terrestrial ice
paleoclimatology Paleoclimatology (American and British English spelling differences, British spelling, palaeoclimatology) is the study of climates for which direct measurements were not taken. As instrumental records only span a tiny part of Earth's history, the ...
can be measured directly through ice cores, historical models of sea ice must rely on proxies. Organisms dwelling on the sea ice eventually detach from the ice and fall through the water column, particularly when the sea ice melts. A portion of the material that reaches the seafloor is buried before it is consumed and is thus preserved in the sedimentary record. There are a number of organisms whose value as proxies for the presence of sea ice has been investigated, including particular species of diatoms,
dinoflagellate cysts Dinocysts or dinoflagellate cysts are typically 15 to 100 µm in diameter and produced by around 15–20% of living dinoflagellates as a dormant, zygotic stage of their lifecycle, which can accumulate in the sediments as microfossils. Organic- ...
,
ostracod Ostracods, or ostracodes, are a class of the Crustacea (class Ostracoda), sometimes known as seed shrimp. Some 70,000 species (only 13,000 of which are extant) have been identified, grouped into several orders. They are small crustaceans, typi ...
s, and
foraminifers Foraminifera (; Latin for "hole bearers"; informally called "forams") are single-celled organisms, members of a phylum or class of amoeboid protists characterized by streaming granular ectoplasm for catching food and other uses; and commonly an ...
. Variation in carbon and oxygen isotopes in a sediment core can also be used to make inferences about sea ice extent. Each proxy has advantages and disadvantages; for example, some diatom species that are unique to sea ice are very abundant in the sediment record, however, preservation efficiency can vary.


Terrestrial ice algae

Algae also occur on terrestrial ice sheets and glaciers. The species found in these habitats are distinct from those associated with sea ice because the system is freshwater. Even within these habitats, there is a wide diversity of habitat types and algal assemblages. For example, cryosestic communities are specifically found on the surface of glaciers where the snow periodically melts during the day. Research has been done on glaciers and ice sheets across the world and several species have been identified. However, although there seems to be a wide array of species they have not been found is equal amounts. The most abundant species identified on different glaciers are ''Ancyonema nordenskioldii'' and ''
Chlamydomonas nivalis ''Chlamydomonas nivalis'', also referred to as ''Chloromonas typhlos'', is a unicellular red-coloured photosynthetic green alga that is found in the snowfields of the alps and polar regions all over the world. They are one of the main algae resp ...
''. Algae can grow within and attached to lake ice as well. Within the ice, algae often grows in water-filled air pockets found in the slush layer formed between the ice- and snow interface. For instance, the diatom species ''Aulacoseira baicalensis''
endemic Endemism is the state of a species being found in a single defined geographic location, such as an island, state, nation, country or other defined zone; organisms that are indigenous to a place are not endemic to it if they are also found else ...
to Lake Baikal can reproduce intensively in water-filled pockets within the ice as well as attached to the ice sheet. Alpine freshwater ice and snow which can last over half a year has been found to support an overall higher microbial biomass and algal activity than the lake water itself as well as specific predatory species of
ciliate The ciliates are a group of alveolates characterized by the presence of hair-like organelles called cilia, which are identical in structure to eukaryotic flagella, but are in general shorter and present in much larger numbers, with a differen ...
s only found in the slush layer of the ice and snow interface. Algae living on the snowpack of ice-covered lakes may be especially rich in essential
polyunsaturated fatty acid Polyunsaturated fatty acids (PUFAs) are fatty acids that contain more than one double bond in their backbone. This class includes many important compounds, such as essential fatty acids and those that give drying oils their characteristic proper ...
s. Table 1. Algae Species Composition Across Studies on Glaciers and Ice Sheets


Implications for climate change

The rate of glacier melt depends on the surface
albedo Albedo (; ) is the measure of the diffuse reflection of solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body that refl ...
. Recent research has shown the growth of algae darkens local surface conditions, decreasing the albedo and thus increases the melt rate on these surfaces. Melting glaciers and ice sheets have been directly linked to increase in
sea level rise Globally, sea levels are rising due to human-caused climate change. Between 1901 and 2018, the globally averaged sea level rose by , or 1–2 mm per year on average.IPCC, 2019Summary for Policymakers InIPCC Special Report on the Ocean and Cry ...
. The second largest ice sheet is the Greenland Ice Sheet which has been retreating at alarming rates. Sea level rise will lead to an increase in both frequency and intensity of storm events. On enduring ice sheets and snow pack, terrestrial ice algae often color the ice due to accessory pigments, popularly known as "
watermelon snow Watermelon snow, also called snow algae, pink snow, red snow, or blood snow, is a phenomenon caused by '' Chlamydomonas nivalis'', a species of green algae containing a secondary red carotenoid pigment (astaxanthin) in addition to chlorophyll. Unli ...
". The dark pigments within the structure of algae increases sunlight absorption, leading to an increase in the melting rate. Algae blooms have been shown to appear on glaciers and ice sheets once the snow had begun to melt, which occurs when the air temperature is above the freezing point for a few days. The abundance of algae changes with the seasons and also spatially on glaciers. Their abundance is highest during the melting season of glaciers which occurs in the summer months. Climate change is affecting both the start of the melting season and also the length of this period, which will lead to an increase in the amount of algae growth.


Ice–albedo feedback loop (SAF)

As the ice/snow begins to melt the area the ice covers decreases which means a higher portion of land is exposed. The land underneath the ice has a higher rate of solar absorption due to it being less reflective and darker. Melting snow also has lower albedo than dry snow or ice because of its optical properties, so as snow begins to melt the albedo decreases, which results in more snow melting, and the loop continues. This feedback loop is referred to as the Ice–albedo feedback loop. This can have drastic effects on the amount of snow melting each season. Algae plays a role in this feedback loop by decreasing the level of albedo of the snow/ice. This growth of algae has been studied but its exact effects on decreasing albedo is still unknown. The Black and Bloom project is conducting research to determine the amount algae are contributing to the darkening of the Greenland Ice Sheet, as well as algae's impact on the melting rates of the ice sheets. It is important to understand the extent to which algae is changing the albedo on glaciers and ice sheets. Once this is known, it should be incorporated into global climate models and then used to predict sea level rise.


References


External links

* * * * * {{Cite news, url=http://www.livescience.com/48847-sea-ice-is-staple-of-arctic-food-chain.html, title=Sea Ice Algae is Staple of Arctic Food Chain, work=Live Science, access-date=2017-03-15 Algae Aquatic ecology