IGF-1 receptor
   HOME

TheInfoList



OR:

The insulin-like growth factor 1 (IGF-1) receptor is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
found on the surface of human cells. It is a
transmembrane A transmembrane protein (TP) is a type of integral membrane protein that spans the entirety of the cell membrane. Many transmembrane proteins function as gateways to permit the transport of specific substances across the membrane. They frequent ...
receptor that is activated by a hormone called insulin-like growth factor 1 ( IGF-1) and by a related hormone called
IGF-2 Insulin-like growth factor 2 (IGF-2) is one of three protein hormones that share structural similarity to insulin. The MeSH definition reads: "A well-characterized neutral peptide believed to be secreted by the liver and to circulate in the b ...
. It belongs to the large class of
tyrosine kinase A tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to the tyrosine residues of specific proteins inside a cell. It functions as an "on" or "off" switch in many cellular functions. Tyrosine kinases belong to a larger cla ...
receptors. This receptor mediates the effects of IGF-1, which is a polypeptide protein hormone similar in molecular structure to insulin. IGF-1 plays an important role in growth and continues to have anabolic effects in adults – meaning that it can induce hypertrophy of skeletal muscle and other target tissues. Mice lacking the IGF-1 receptor die late in development, and show a dramatic reduction in body mass. This testifies to the strong growth-promoting effect of this receptor.


Structure

Two alpha subunits and two beta subunits make up the IGF-1 receptor. Both the α and β subunits are synthesized from a single mRNA precursor. The precursor is then glycosylated, proteolytically cleaved, and crosslinked by cysteine bonds to form a functional transmembrane αβ chain. The α chains are located extracellularly, while the β subunit spans the membrane and is responsible for intracellular signal transduction upon ligand stimulation. The mature IGF-1R has a molecular weight of approximately 320 kDa.citation?
/sup> The receptor is a member of a family which consists of the
insulin receptor The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase. Metabolically, the insulin receptor plays a key role in the regulation of glucose ho ...
and the IGF-2R (and their respective ligands IGF-1 and IGF-2), along with several IGF-binding proteins. IGF-1R and the insulin receptor both have a binding site for ATP, which is used to provide the phosphates for
autophosphorylation Autophosphorylation is a type of post-translational modification of proteins. It is generally defined as the phosphorylation of the kinase by itself. In eukaryotes, this process occurs by the addition of a phosphate group to serine, threoni ...
. There is a 60% homology between IGF-1R and the insulin receptor. The structures of the autophosphorylation complexes of tyrosine residues 1165 and 1166 have been identified within crystals of the IGF1R kinase domain. In response to ligand binding, the α chains induce the tyrosine autophosphorylation of the β chains. This event triggers a cascade of intracellular signaling that, while cell type-specific, often promotes cell survival and cell proliferation.


Family members

Tyrosine kinase receptors, including the IGF-1 receptor, mediate their activity by causing the addition of a
phosphate group In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid . The phosphate or orthophosphate ion is derived from phosph ...
s to particular tyrosines on certain proteins within a cell. This addition of phosphate induces what are called "cell signaling" cascades - and the usual result of activation of the IGF-1 receptor is survival and proliferation in mitosis-competent cells, and growth (hypertrophy) in tissues such as skeletal muscle and
cardiac muscle Cardiac muscle (also called heart muscle, myocardium, cardiomyocytes and cardiac myocytes) is one of three types of vertebrate muscle tissues, with the other two being skeletal muscle and smooth muscle. It is an involuntary, striated muscle th ...
. During embryonic development, the IGF-1R pathway is involved with the developing limb buds. The IGFR signalling pathway is of critical importance during normal development of mammary gland tissue during
pregnancy Pregnancy is the time during which one or more offspring develops (gestation, gestates) inside a woman, woman's uterus (womb). A multiple birth, multiple pregnancy involves more than one offspring, such as with twins. Pregnancy usually occur ...
and
lactation Lactation describes the secretion of milk from the mammary glands and the period of time that a mother lactates to feed her young. The process naturally occurs with all sexually mature female mammals, although it may predate mammals. The proces ...
. During pregnancy, there is intense proliferation of
epithelial cells Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercell ...
which form the duct and gland tissue. Following weaning, the cells undergo apoptosis and all the tissue is destroyed. Several growth factors and hormones are involved in this overall process, and IGF-1R is believed to have roles in the differentiation of the cells and a key role in inhibiting apoptosis until weaning is complete.


Function


Insulin signaling

IGF-1 binds to at least two cell surface receptors: the IGF1 Receptor (IGFR), and the
insulin receptor The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase. Metabolically, the insulin receptor plays a key role in the regulation of glucose ho ...
. The IGF-1 receptor seems to be the "physiologic" receptor—it binds IGF-1 at significantly higher affinity than it binds insulin. Like the insulin receptor, the IGF-1 receptor is a receptor tyrosine kinase—meaning it signals by causing the addition of a phosphate molecule on particular tyrosines. IGF-1 activates the insulin receptor at approximately 10% the potency of insulin. Part of this signaling may be via IGF1R/insulin receptor heterodimers (the reason for the confusion is that binding studies show that IGF-1 binds the insulin receptor 100-fold less well than insulin, yet that does not correlate with the actual potency of IGF-1 ''in vivo'' at inducing phosphorylation of the insulin receptor, and hypoglycemia).


Aging

Studies in female mice have shown that both
supraoptic nucleus The supraoptic nucleus (SON) is a nucleus of magnocellular neurosecretory cells in the hypothalamus of the mammalian brain. The nucleus is situated at the base of the brain, adjacent to the optic chiasm. In humans, the SON contains about 3,000 n ...
(SON) and
paraventricular nucleus The paraventricular nucleus (PVN, PVA, or PVH) is a nucleus in the hypothalamus. Anatomically, it is adjacent to the third ventricle and many of its neurons project to the posterior pituitary. These projecting neurons secrete oxytocin and a smaller ...
(PVN) lose approximately one-third of IGF-1R immunoreactive cells with normal aging. Also, old calorically restricted (CR) mice lost higher numbers of IGF-1R non-immunoreactive cells while maintaining similar counts of IGF-1R immunoreactive cells in comparison to old-Al mice. Consequently, old-CR mice show a higher percentage of IGF-1R immunoreactive cells, reflecting increased hypothalamic sensitivity to IGF-1 in comparison to normally aging mice.


Craniosynostosis

Mutations in IGF1R have been associated with craniosynostosis.


Body size

IGF-1R has been shown to have a significant effect on body size in small dog breeds. A "nonsynonymous SNP at chr3:44,706,389 that changes a highly conserved arginine at amino acid 204 to histidine" is associated with particularly tiny body size. "This mutation is predicted to prevent formation of several hydrogen bonds within the cysteine-rich domain of the receptor’s ligand-binding extracellular subunit. Nine of 13 tiny dog breeds carry the mutation and many dogs are homozygous for it." Smaller individuals within several small and medium-sized breeds were shown to carry this mutation as well. Mice carrying only one functional copy of IGF-1R are normal, but exhibit a ~15% decrease in body mass. IGF-1R has also been shown to regulate body size in dogs. A mutated version of this gene is found in a number of small dog breeds.


Gene inactivation/deletion

Deletion of the IGF-1 receptor gene in mice results in lethality during early embryonic development, and for this reason, IGF-1 insensitivity, unlike the case of
growth hormone Growth hormone (GH) or somatotropin, also known as human growth hormone (hGH or HGH) in its human form, is a peptide hormone that stimulates growth, cell reproduction, and cell regeneration in humans and other animals. It is thus important in h ...
(GH) insensitivity ( Laron syndrome), is not observed in the human population.


Clinical significance


Cancer

The IGF-1R is implicated in several cancers, including breast, prostate, and lung cancers. In some instances its anti-apoptotic properties allow cancerous cells to resist the cytotoxic properties of chemotherapeutic drugs or radiotherapy. In breast cancer, where EGFR inhibitors such as
erlotinib Erlotinib, sold under the brand name Tarceva among others, is a medication used to treat non-small cell lung cancer (NSCLC) and pancreatic cancer. Specifically it is used for NSCLC with mutations in the epidermal growth factor receptor (EGFR) ...
are being used to inhibit the EGFR signaling pathway, IGF-1R confers resistance by forming one half of a heterodimer (see the description of EGFR signal transduction in the
erlotinib Erlotinib, sold under the brand name Tarceva among others, is a medication used to treat non-small cell lung cancer (NSCLC) and pancreatic cancer. Specifically it is used for NSCLC with mutations in the epidermal growth factor receptor (EGFR) ...
page), allowing EGFR signaling to resume in the presence of a suitable inhibitor. This process is referred to as crosstalk between EGFR and IGF-1R. It is further implicated in breast cancer by increasing the metastatic potential of the original tumour by conferring the ability to promote vascularisation. Increased levels of the IGF-IR are expressed in the majority of primary and metastatic prostate cancer patient tumors. Evidence suggests that IGF-IR signaling is required for survival and growth when prostate cancer cells progress to androgen independence. In addition, when immortalized prostate cancer cells mimicking advanced disease are treated with the IGF-1R ligand, IGF-1, the cells become more motile. Members of the IGF receptor family and their ligands also seem to be involved in the carcinogenesis of mammary tumors of dogs. IGF1R is amplified in several cancer types based on analysis of TCGA data, and gene amplification could be one mechanism for overexpression of IGF1R in cancer. Lung cancer cells stimulated using
glucocorticoid Glucocorticoids (or, less commonly, glucocorticosteroids) are a class of corticosteroids, which are a class of steroid hormones. Glucocorticoids are corticosteroids that bind to the glucocorticoid receptor that is present in almost every verteb ...
s were induced into a reversible dormancy state which was dependent on the IGF-1R and its accompanying survival signaling pathways.


Inhibitors

Due to the similarity of the structures of IGF-1R and the insulin receptor (IR), especially in the regions of the ATP binding site and tyrosine kinase regions, synthesising selective inhibitors of IGF-1R is difficult. Prominent in current research are three main classes of inhibitor: #
Tyrphostin A tyrosine kinase inhibitor (TKI) is a pharmaceutical drug that inhibits tyrosine kinases. Tyrosine kinases are enzymes responsible for the activation of many proteins by signal transduction cascades. The proteins are activated by adding a phosph ...
s such as AG538 and AG1024. These are in early pre-clinical testing. They are not thought to be ATP-competitive, although they are when used in EGFR as described in QSAR studies. These show some selectivity towards IGF-1R over IR. # Pyrrolo(2,3-d)-pyrimidine derivatives such as NVP-AEW541, invented by Novartis, which show far greater (100 fold) selectivity towards IGF-1R over IR. # Monoclonal antibodies are probably the most specific and promising therapeutic compounds. Those currently undergoing trials include figitumumab.


Interactions

Insulin-like growth factor 1 receptor has been shown to
interact Advocates for Informed Choice, dba interACT or interACT Advocates for Intersex Youth, is a 501(c)(3) nonprofit organization using innovative strategies to advocate for the legal and human rights of children with intersex traits. The organizati ...
with: *
ARHGEF12 Rho guanine nucleotide exchange factor 12 is a protein that in humans is encoded by the ''ARHGEF12'' gene. This protein is also called RhoGEF12 or Leukemia-associated Rho guanine nucleotide exchange factor (LARG). Function Rho guanine nucleotid ...
, *
C-src tyrosine kinase Tyrosine-protein kinase CSK also known as C-terminal Src kinase is an enzyme that, in humans, is encoded by the CSK gene. This enzyme phosphorylates tyrosine residues located in the C-terminal end of Src-family kinases (SFKs) including Proto-onco ...
, *
Cbl gene ''Cbl'' (named after Casitas B-lineage Lymphoma) is a mammalian gene encoding the protein CBL which is an E3 ubiquitin-protein ligase involved in cell signalling and protein ubiquitination. Mutations to this gene have been implicated in a numbe ...
, * EHD1, *
GRB10 Growth factor receptor-bound protein 10 also known as insulin receptor-binding protein Grb-IR is a protein that in humans is encoded by the ''GRB10'' gene. Function The product of this gene belongs to a small family of adaptor proteins that are ...
, *
IRS1 Insulin receptor substrate 1 (IRS-1) is a signaling adapter protein that in humans is encoded by the ''IRS-1'' gene. It is a 131 kDa protein with amino acid sequence of 1242 residues. It contains a single pleckstrin homology (PH) domain at the N-te ...
, * Mdm2, *
NEDD4 E3 ubiquitin-protein ligase NEDD4, also known as neural precursor cell expressed developmentally down-regulated protein 4 (whence "NEDD4") is an enzyme that is, in humans, encoded by the ''NEDD4'' gene. NEDD4 is an E3 ubiquitin ligase enzyme, that ...
, *
PIK3R3 Phosphatidylinositol 3-kinase regulatory subunit gamma is an enzyme, which in humans is encoded by the ''PIK3R3'' gene. Interactions PIK3R3 has been shown to interact with Insulin-like growth factor 1 receptor, IRS1 Insulin receptor substrate ...
, *
PTPN11 Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) also known as protein-tyrosine phosphatase 1D (PTP-1D), Src homology region 2 domain-containing phosphatase-2 (SHP-2), or protein-tyrosine phosphatase 2C (PTP-2C) is an enzyme that in huma ...
, *
RAS p21 protein activator 1 RAS p21 protein activator 1 or RasGAP (Ras GTPase activating protein), also known as RASA1, is a 120- kDa cytosolic human protein that provides two principal activities: * Inactivation of Ras from its active GTP-bound form to its inactive GDP-bo ...
, *
SHC1 SHC-transforming protein 1 is a protein that in humans is encoded by the ''SHC1'' gene. SHC has been found to be important in the regulation of apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of pro ...
*
SOCS2 Suppressor of cytokine signaling 2 is a protein that in humans is encoded by the ''SOCS2'' gene. This gene encodes a member of the STAT-induced STAT inhibitor (SSI), also known as suppressor of cytokine signalling (SOCS), family. SSI family member ...
, *
SOCS3 Suppressor of cytokine signaling 3 (SOCS3 or SOCS-3) is a protein that in humans is encoded by the ''SOCS3'' gene. This gene encodes a member of the STAT-induced STAT inhibitor (SSI), also known as suppressor of cytokine signaling (SOCS), family. ...
, and *
YWHAE 14-3-3 protein epsilon is a protein that in humans is encoded by the ''YWHAE'' gene. Function This gene product belongs to the 14-3-3 family of proteins which mediate signal transduction by binding to phosphoserine-containing proteins. This hi ...
.


Regulation

There is evidence to suggest that IGF1R is negatively regulated by the
microRNA MicroRNA (miRNA) are small, single-stranded, non-coding RNA molecules containing 21 to 23 nucleotides. Found in plants, animals and some viruses, miRNAs are involved in RNA silencing and post-transcriptional regulation of gene expression. mi ...
miR-7.


See also

* Hypothalamic–pituitary–somatic axis *
Insulin receptor The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase. Metabolically, the insulin receptor plays a key role in the regulation of glucose ho ...
* Linsitinib, an inhibitor of IGF-1R in clinical trials for cancer treatment


References


Further reading

* * * * * * * *


External links

* * {{Portal bar, Biology, border=no Clusters of differentiation Tyrosine kinase receptors Integral membrane proteins