Hypernova
   HOME

TheInfoList



OR:

A hypernova (sometimes called a collapsar) is a very energetic
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
thought to result from an extreme core-collapse scenario. In this case, a massive star (>30
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
es) collapses to form a
rotating black hole A rotating black hole is a black hole that possesses angular momentum. In particular, it rotates about one of its axes of symmetry. All celestial objects – planets, stars (Sun), galaxies, black holes – spin. Types of black holes Ther ...
emitting twin energetic jets and surrounded by an
accretion disk An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is typically a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other ...
. It is a type of stellar explosion that ejects material with an unusually high
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acce ...
, an order of magnitude higher than most supernovae, with a luminosity at least 10 times greater. They usually appear similar to a
type Ic supernova Type Ib and Type Ic supernovae are categories of supernovae that are caused by the stellar core collapse of massive stars. These stars have shed or been stripped of their outer envelope of hydrogen, and, when compared to the spectrum ...
, but with unusually broad spectral lines indicating an extremely high expansion velocity. Hypernovae are one of the mechanisms for producing long gamma ray bursts (GRBs), which range from 2 seconds to over a minute in duration. They have also been referred to as superluminous supernovae, though that classification also includes other types of extremely luminous stellar explosions that have different origins.


History

In the 1980s, the term ''hypernova'' was used to describe a theoretical type of supernova now known as a pair-instability supernova. It referred to the extremely high energy of the explosion compared to typical
core collapse supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when a ...
e. The term had previously been used to describe hypothetical explosions from diverse events such as
hyperstar In astronomy, metallicity is the abundance of elements present in an object that are heavier than hydrogen and helium. Most of the normal physical matter in the Universe is either hydrogen or helium, and astronomers use the word ''"metals"'' as ...
s, extremely massive population III stars in the early universe, or from events such as
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
mergers. In February 1997, Dutch-Italian satellite
BeppoSAX BeppoSAX was an Italian–Dutch satellite for X-ray astronomy which played a crucial role in resolving the origin of gamma-ray bursts (GRBs), the most energetic events known in the universe. It was the first X-ray mission capable of simultaneous ...
was able to trace GRB 970508 to a faint galaxy roughly 6 billion light years away. From analyzing the spectroscopic data for both the GRB 970508 and its host galaxy, Bloom et al. concluded in 1998 that a hypernova was the likely cause. That same year, hypernovae were hypothesized in greater detail by Polish astronomer Bohdan Paczyński as supernovae from rapidly spinning stars. The usage of the term ''hypernova'' from the late 20th century has since been refined to refer to those supernovae with unusually large kinetic energy. The first hypernova observed was
SN 1998bw SN 1998bw was a rare broad-lined Type Ic gamma ray burst supernova detected on 26 April 1998 in the ESO 184-G82 spiral galaxy, which some astronomers believe may be an example of a collapsar (hypernova). The supernova has been linked to GRB 9804 ...
, with a luminosity 100 times higher than a standard Type Ib. This supernova was the first to be associated with a gamma-ray burst (GRB) and it produced a shockwave containing an order of magnitude more energy than a normal supernova. Other scientists prefer to call these objects simply broad-lined
type Ic supernova Type Ib and Type Ic supernovae are categories of supernovae that are caused by the stellar core collapse of massive stars. These stars have shed or been stripped of their outer envelope of hydrogen, and, when compared to the spectrum ...
e. Since then the term has been applied to a variety of objects, not all of which meet the standard definition; for example ASASSN-15lh.


Properties

Hypernovae are thought to be supernovae with ejecta having a kinetic energy larger than about , an order of magnitude higher than a typical core collapse supernova. The ejected nickel masses are large and the ejection velocity up to 99% of the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
. These are typically of type Ic, and some are associated with long-duration
gamma-ray bursts In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies. They are the most energetic and luminous electromagnetic events since the Big Bang. Bursts can last from ten millis ...
. The electromagnetic energy released by these events varies from comparable to other type Ic supernova, to some of the most luminous supernovae known such as SN 1999as. The archetypal hypernova, SN 1998bw, was associated with
GRB 980425 GRB 980425 was a gamma-ray burst (GRB) that was detected on 25 April 1998 at 21:49 UTC. GRB 980425 occurred at approximately the same time as SN 1998bw, providing the first evidence that gamma-ray bursts and supernovae are related, and at a dis ...
. Its spectrum showed no hydrogen and no clear
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
features, but strong silicon lines identified it as a type Ic supernova. The main
absorption line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to ident ...
s were extremely broadened and the light curve showed a very rapid brightening phase, reaching the brightness of a
type Ia supernova A Type Ia supernova (read: "type one-A") is a type of supernova that occurs in binary systems (two stars orbiting one another) in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white ...
at day 16. The total ejected mass was about and the mass of nickel ejected about . All supernovae associated with GRBs have shown the high-energy ejecta that characterises them as hypernovae. Unusually bright radio supernovae have been observed as counterparts to hypernovae, and have been termed "radio hypernovae".


Astrophysical models

Models for hypernova focus on the efficient transfer of energy into the ejecta. In normal
core collapse supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when a ...
e, 99% of neutrinos generated in the collapsing core escape without driving the ejection of material. It is thought that rotation of the supernova progenitor drives a jet that accelerates material away from the explosion at close to the speed of light. Binary systems are increasingly being studied as the best method for both stripping stellar envelopes to leave a bare carbon-oxygen core, and for inducing the necessary spin conditions to drive a hypernova.


Collapsar model

The collapsar model describes a type of supernova that produces a gravitationally collapsed object, or
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
. The word "collapsar", short for "collapsed
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
", was formerly used to refer to the end product of stellar
gravitational collapse Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formatio ...
, a stellar-mass black hole. The word is now sometimes used to refer to a specific model for the collapse of a fast-rotating star. When core collapse occurs in a star with a core at least around fifteen times the sun's mass () — though chemical composition and rotational rate are also significant — the explosion energy is insufficient to expel the outer layers of the star, and it will collapse into a black hole without producing a visible supernova outburst. A star with a core mass slightly below this level — in the range of — will undergo a supernova explosion, but so much of the ejected mass falls back onto the core remnant that it still collapses into a black hole. If such a star is rotating slowly, then it will produce a faint supernova, but if the star is rotating quickly enough, then the fallback to the black hole will produce
relativistic jets An astrophysical jet is an astronomical phenomenon where outflows of ionised matter are emitted as an extended beam along the axis of rotation. When this greatly accelerated matter in the beam approaches the speed of light, astrophysical jets bec ...
. The energy that these jets transfer into the ejected shell renders the visible outburst substantially more luminous than a standard supernova. The jets also beam high energy particles and gamma rays directly outward and thereby produce
x-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
or
gamma-ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically sh ...
bursts; the jets can last for several seconds or longer and correspond to long-duration gamma-ray bursts, but they do not appear to explain short-duration gamma-ray bursts.


Binary models

The mechanism for producing the stripped progenitor, a carbon-oxygen star lacking any significant hydrogen or helium, of type Ic supernovae was once thought to be an extremely evolved massive star, for example a type WO Wolf-Rayet star whose dense
stellar wind A stellar wind is a flow of gas ejected from the upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spherically symmetric. ...
expelled all its outer layers. Observations have failed to detect any such progenitors. It is still not conclusively shown that the progenitors are actually a different type of object, but several cases suggest that lower-mass "helium giants" are the progenitors. These stars are not sufficiently massive to expel their envelopes simply by stellar winds, and they would be stripped by mass transfer to a binary companion. Helium giants are increasingly favoured as the progenitors of type Ib supernovae, but the progenitors of type Ic supernovae is still uncertain. One proposed mechanism for producing gamma-ray bursts is induced
gravitational collapse Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formatio ...
, where a
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
is triggered to collapse into a
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
by the core collapse of a close companion consisting of a stripped carbon-oxygen core. The induced neutron star collapse allows for the formation of jets and high-energy
ejecta Ejecta (from the Latin: "things thrown out", singular ejectum) are particles ejected from an area. In volcanology, in particular, the term refers to particles including pyroclastic materials (tephra) that came out of a volcanic explosion and magma ...
that have been difficult to model from a single star.


See also

* * *


References


Further reading

* * * * {{Portal bar, Physics, Astronomy, Spaceflight, Outer space, Solar System Stellar phenomena Hypergiants Wolf–Rayet stars Stellar evolution Star types Astronomical events