Hubble volume
   HOME

TheInfoList



OR:

In
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
, a Hubble volume (named for the astronomer Edwin Hubble) or Hubble sphere, subluminal sphere, causal sphere and sphere of causality is a spherical region of the
observable universe The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these ob ...
surrounding an observer beyond which objects recede from that observer at a rate greater than the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
due to the expansion of the
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. ...
. The Hubble volume is approximately equal to 1031 cubic light years (or about 1079 cubic meters). The
proper Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map for ...
radius of a Hubble sphere (known as the Hubble radius or the Hubble length) is c/H_0, where c is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
and H_0 is the
Hubble constant Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving ...
. The surface of a Hubble sphere is called the ''microphysical horizon'', the ''Hubble surface'', or the ''Hubble limit''. More generally, the term ''Hubble volume'' can be applied to any region of space with a volume of order (c/H_0)^3. However, the term is also frequently (but mistakenly) used as a synonym for the
observable universe The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these ob ...
; the latter is larger than the Hubble volume.For a discussion of why objects that are outside the Earth's Hubble sphere can be seen from Earth, see The center of the Hubble volume and observable universe is arbitrary in relation to the overall universe; instead it is centered around its
origin Origin(s) or The Origin may refer to: Arts, entertainment, and media Comics and manga * ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002 * ''The Origin'' (Buffy comic), a 1999 ''Buffy the Vampire Sl ...
(impersonal or personal "observer").


Relationship to age of the universe

The Hubble length c/H_0 is 14.4 billion light years in the
standard cosmological model The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda (Greek Λ) associated with ...
, somewhat larger than c times the
age of the universe In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, ...
, 13.8 billion years.


Hubble limit as an event horizon

For objects at the Hubble limit, the space between us and the object of interest has an average expansion speed of ''c''. So, in a universe with constant
Hubble parameter Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
, light emitted at the present time by objects outside the Hubble limit would never be seen by an observer on Earth. That is, the Hubble limit would coincide with a cosmological
event horizon In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact ob ...
(a boundary separating events visible at some time and those that are never visible). See Hubble horizon for more details. However, the
Hubble parameter Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
is not constant in various cosmological models so that the Hubble limit does not, in general, coincide with a cosmological event horizon. For example, in a decelerating Friedmann universe the Hubble sphere expands with time, and its boundary overtakes light emitted by more distant galaxies so that light emitted at earlier times by objects ''outside'' the Hubble volume still may eventually arrive inside the sphere and be seen by us. Similarly, in an accelerating universe with a decreasing Hubble constant, the Hubble volume expands with time and can overtake light from sources previously receding relative to us. In both of these circumstances, the cosmological
event horizon In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact ob ...
lies beyond the Hubble Horizon. In a universe with an increasing Hubble constant, the Hubble horizon will contract, and its boundary overtakes light emitted by nearer galaxies so that light emitted at earlier times by objects ''inside'' the Hubble sphere will eventually recede outside the sphere and will never be seen by us. If the shrinkage of the Hubble volume does not stop due to some yet unknown phenomenon (one suggestion is the "early phase transition"), the Hubble volume will become nearly a point (due to the uncertainty principle pure singularities are impossible; also a proportion of their self-interactions are energetic enough to produce escaping particles via quantum tunneling), meeting the criteria of big bang. The justification of this view is that no subluminal Hubble volume will exist and
pointwise superluminal expansion In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some function f. An important class of pointwise concepts are the ''pointwise operations'', that is, operations defined ...
(the generalization of the Big Bang theory) will prevail everywhere or at least in a vast region of the universe. In this cyclic cosmology (there are many other cyclic versions) the universe always expands and doesn't revert to a smaller default size (non-conformal or expandatory conformal, non-Penrosean expandatory cyclic cosmology). Observations indicate that the expansion of the universe is
accelerating In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by th ...
, and the Hubble constant is thought to be decreasing. Thus, sources of light outside the Hubble horizon but inside the cosmological event horizon can eventually reach us. A fairly counter-intuitive result is that photons we observe from the first ~5 billion years of the universe come from regions that are, and always have been, receding from us at superluminal speeds.


See also

*
Hubble's law Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
* Hubble horizon *
Particle horizon The particle horizon (also called the cosmological horizon, the comoving horizon (in Dodelson's text), or the cosmic light horizon) is the maximum distance from which light from particles could have traveled to the observer in the age of the univers ...


References


External links


The Hubble Volume Simulations
{{Portal bar, Physics, Mathematics, Astronomy, Stars, Spaceflight, Outer space, Solar System, Science Physical cosmology